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1 (a) Consider a finite presentation ⟨S | R⟩ for a group G. Define the area of a word
w ∈ F (S) that represents the identity in G, and the Dehn function of the presentation
⟨S | R⟩.

(b) State the normal form theorem for amalgamated free products. In the case of a
free product A ∗B, deduce a sufficient condition for an element

g = a1b1a2 . . . akbk

of A ∗B to be non-trivial.

Now consider the infinite dihedral groupD∞, given by the presentation ⟨a, b | a2, b2⟩.

(c) Describe the Bass–Serre tree of the natural decomposition of D∞ as a free
product. Deduce that D∞ is quasi-isometric to R. [You may use results from the course,
as long as they are clearly stated.]

(d) Let w be a reduced word in a, b of length n that represents the identity in D∞.
Prove that n is even. Prove furthermore that the area of w is at most n/2.

(e) Prove that the Dehn function of the given presentation ofD∞ satisfies δ(2n) = n.

2 Let T be a tree, and let ϕ be a combinatorial isometry of T . Recall that either ϕ
fixes a point of T (i.e. ϕ is elliptic) or ϕ preserves a line Axis(ϕ) in T (i.e. ϕ is hyperbolic).

(a) Assuming that ϕ is elliptic, prove that the set of fixed points Fix(ϕ) is path-
connected.

(b) Assuming that ϕ is hyperbolic, prove that Axis(ϕ) is the set of points moved a
minimal distance by ϕ. Prove that Axis(ϕn) = Axis(ϕ) for all integers n ̸= 0.

Now consider the Baumslag–Solitar group

G = BS(m,n) = ⟨a, b | bamb−1 = an⟩ ,

for non-zero positive integers m ̸= n.

(c) Prove that, whenever G acts combinatorially on a tree T , a acts elliptically.

(d) Deduce that G does not decompose non-trivially as a free product. [You may
assume without proof that a has infinite order in G.]
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3 Throughout this question a group G, generated by a finite set S, has a subgroup
H generated by a finite set T . Let dS and dT be the associated word metrics.

(a) We say that H is quasi-isometrically embedded in G if there are λ ⩾ 1 and ϵ ⩾ 0
such that the inclusion map (H, dT ) → (G, dS) is a (λ, ϵ)-quasi-isometric embedding. Prove
that this definition is independent of the choices of S and T .

A subspace Y of a geodesic metric space X is called K-quasiconvex (for K ⩾ 0) if
any geodesic [y1, y2] with endpoints in Y is contained in the closed K-neighbourhood of
Y .

(b) Prove that, if H is K-quasiconvex in CayS(G), then H is generated by the
set of elements of H of length at most 2K + 1 with respect to S. Deduce that H is
quasi-isometrically embedded in G.

(c) Give an example of G generated by a finite S and a finitely generated subgroup
H, such that H is quasi-isometrically embedded in G but H is not K-quasiconvex in
CayS(G) for any K.

(d) Now suppose that G is hyperbolic. Prove that, if H is quasi-isometrically
embedded in G, then H is quasiconvex in CayS(G).

[Hint: In part (d), you may use results from the course as long as they are clearly
stated.]

4 Consider a group Γ acting by isometries on a proper metric space X. For any
ϕ ∈ Γ, define the displacement function, dϕ : X → R, by

dϕ(x) = d(x, ϕ(x)) .

(a) Prove that dϕ is continuous.

Now suppose that infx∈X dϕ(x) = 0.

(b) Suppose that the action of Γ on X is cocompact. Prove that, for any basepoint
x0 ∈ X, there is a constant C, a sequence (ϕn) of conjugates of ϕ and a sequence (xn) of
points in X such that d(x0, xn) ⩽ C and dϕn(xn) → 0.

(c) Now suppose in addition that the action of Γ on X is properly discontinuous.
Prove that ϕ fixes a point in X.

(d) Prove that any Fuchsian group which acts cocompactly on the hyperbolic plane
does not contain a non-trivial parabolic isometry. [You may use without proof that

d(x1 + iy, x2 + iy) ⩽
|x1 − x2|

y

in the upper half-plane model of the hyperbolic plane.]
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