MAMA/133, NST3AS/133, MAAS/133

MAT3 MATHEMATICAL TRIPOS Part III

Thursday 12 June 2025 $-1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 133

GEOMETRIC GROUP THEORY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 (a) Consider a finite presentation $\langle S | R \rangle$ for a group G. Define the *area* of a word $w \in F(S)$ that represents the identity in G, and the *Dehn function* of the presentation $\langle S | R \rangle$.

(b) State the normal form theorem for amalgamated free products. In the case of a free product A * B, deduce a sufficient condition for an element

$$g = a_1 b_1 a_2 \dots a_k b_k$$

of A * B to be non-trivial.

Now consider the infinite dihedral group D_{∞} , given by the presentation $\langle a, b \mid a^2, b^2 \rangle$.

(c) Describe the Bass–Serre tree of the natural decomposition of D_{∞} as a free product. Deduce that D_{∞} is quasi-isometric to \mathbb{R} . [You may use results from the course, as long as they are clearly stated.]

(d) Let w be a reduced word in a, b of length n that represents the identity in D_{∞} . Prove that n is even. Prove furthermore that the area of w is at most n/2.

(e) Prove that the Dehn function of the given presentation of D_{∞} satisfies $\delta(2n) = n$.

2 Let T be a tree, and let ϕ be a combinatorial isometry of T. Recall that either ϕ fixes a point of T (i.e. ϕ is *elliptic*) or ϕ preserves a line Axis(ϕ) in T (i.e. ϕ is *hyperbolic*).

(a) Assuming that ϕ is elliptic, prove that the set of fixed points $Fix(\phi)$ is path-connected.

(b) Assuming that ϕ is hyperbolic, prove that $\operatorname{Axis}(\phi)$ is the set of points moved a minimal distance by ϕ . Prove that $\operatorname{Axis}(\phi^n) = \operatorname{Axis}(\phi)$ for all integers $n \neq 0$.

Now consider the Baumslag–Solitar group

$$G = BS(m, n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle,$$

for non-zero positive integers $m \neq n$.

(c) Prove that, whenever G acts combinatorially on a tree T, a acts elliptically.

(d) Deduce that G does not decompose non-trivially as a free product. [You may assume without proof that a has infinite order in G.]

3 Throughout this question a group G, generated by a finite set S, has a subgroup H generated by a finite set T. Let d_S and d_T be the associated word metrics.

(a) We say that H is quasi-isometrically embedded in G if there are $\lambda \ge 1$ and $\epsilon \ge 0$ such that the inclusion map $(H, d_T) \to (G, d_S)$ is a (λ, ϵ) -quasi-isometric embedding. Prove that this definition is independent of the choices of S and T.

A subspace Y of a geodesic metric space X is called K-quasiconvex (for $K \ge 0$) if any geodesic $[y_1, y_2]$ with endpoints in Y is contained in the closed K-neighbourhood of Y.

(b) Prove that, if H is K-quasiconvex in $\operatorname{Cay}_S(G)$, then H is generated by the set of elements of H of length at most 2K + 1 with respect to S. Deduce that H is quasi-isometrically embedded in G.

(c) Give an example of G generated by a finite S and a finitely generated subgroup H, such that H is quasi-isometrically embedded in G but H is not K-quasiconvex in $\operatorname{Cay}_S(G)$ for any K.

(d) Now suppose that G is hyperbolic. Prove that, if H is quasi-isometrically embedded in G, then H is quasiconvex in $\operatorname{Cay}_S(G)$.

[*Hint:* In part (d), you may use results from the course as long as they are clearly stated.]

4 Consider a group Γ acting by isometries on a proper metric space X. For any $\phi \in \Gamma$, define the *displacement function*, $d_{\phi} : X \to \mathbb{R}$, by

$$d_{\phi}(x) = d(x, \phi(x)) \,.$$

(a) Prove that d_{ϕ} is continuous.

Now suppose that $\inf_{x \in X} d_{\phi}(x) = 0$.

(b) Suppose that the action of Γ on X is cocompact. Prove that, for any basepoint $x_0 \in X$, there is a constant C, a sequence (ϕ_n) of conjugates of ϕ and a sequence (x_n) of points in X such that $d(x_0, x_n) \leq C$ and $d_{\phi_n}(x_n) \to 0$.

(c) Now suppose in addition that the action of Γ on X is properly discontinuous. Prove that ϕ fixes a point in X.

(d) Prove that any Fuchsian group which acts cocompactly on the hyperbolic plane does not contain a non-trivial parabolic isometry. [You may use without proof that

$$d(x_1 + iy, x_2 + iy) \leqslant \frac{|x_1 - x_2|}{y}$$

in the upper half-plane model of the hyperbolic plane.]

END OF PAPER

Part III, Paper 133