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Except where a proof is explicitly requested, you may use any theorem from the
course without proof provided it is stated clearly.

1 Let p ⩾ 2 be a prime and let n > 1 be an integer.

(a) State and prove the Freiman-Ruzsa theorem in Fn
p .

(b) Give an example to show that the Freiman-Ruzsa theorem is (close to) best possible.
Justify your answer.

(c) Show that there exists a constant C > 1 such that if A ⊆ Fn
p has at least η|A|3

additive quadruples for some η > 0 (i.e. there are at least η|A|3 quadruples
(x, y, z, w) ∈ A4 with x + y = z + w), then A + A − A − A contains a subspace

V ⩽ Fn
p of size |V | ⩾ p−η−C |A|.

Comment on this result in relation to Bogolyubov’s lemma.

2 Let G be a finite abelian group, and let Ĝ denote its character group.

(a) Given Γ ⊆ Ĝ and ρ > 0, define the Bohr set B(Γ, ρ). State a lower bound for the
size of B(Γ, ρ).

(b) Let f : G → [0, 1], let δ = Ex∈Gf(x) > 0, and let ϵ > 0. By considering the Fourier
expansion for f ∗ f ∗ f , show that there exists Γ ⊆ Ĝ of size |Γ| ⩽ ϵ−2δ−1 such that
for all x ∈ G and all y ∈ B(Γ, ϵ)

|f ∗ f ∗ f(x+ y)− f ∗ f ∗ f(x)| < 3ϵδ2.

(c) Deduce that if A ⊆ G is a set of density α = |A|/|G| > 0, then there exists Γ ⊆ Ĝ
of size |Γ| ⩽ 2α−3 and x ∈ G such that x+B(Γ, α) ⊆ A+A+A.

Let G = Z/NZ with N > 1 prime.

(d) Show that for any Γ ⊆ Ẑ/NZ and ρ > 0, B(Γ, ρ) contains an arithmetic progression
of length at least 1

8ρN
1/|Γ| centred at 0.

(e) Deduce that if A ⊆ Z/NZ is a set of density α = |A|/N > 0, then A+A+A contains

an arithmetic progression of length at least 1
8αN

1
2
α3
.
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3 Let G be a finite abelian group. For x ∈ G, let τx denote the shift-by-x operator.
That is, for any function g : G → C, τxg(y) = g(y + x) for all y ∈ G.

(a) Carefully state Croot and Sisask’s almost-periodicity result. Outline a strategy for
its proof.

Let p ⩾ 2 be a prime and let n > 1 be an integer. Suppose that for every f : Fn
p → C, every

integer q ⩾ 2 and every real number ϵ > 0, there are k ⩽ q/ϵ2 characters γ1, γ2, . . . , γk ∈ F̂n
p

and complex numbers c1, c2, . . . , ck with |ci| = 1 for all i ∈ [k] such that

∥∥f − 1

k

k∑
i=1

ciγi∥f̂∥ℓ1(F̂n
p )

∥∥
Lq(Fn

p )
⩽ ϵ∥f̂∥

ℓ1(F̂n
p )
.

(b) Show that given f : Fn
p → C, q ⩾ 2 and ϵ > 0, there is a subspace W ⩽ Fn

p of
codimension at most 4q/ϵ2 such that for all x ∈ W

∥τxf − f∥Lq(Fn
p )

⩽ ϵ∥f̂∥
ℓ1(F̂n

p )
.

(c) Making suitable choices of f , q and ϵ, show that if A ⊆ Fn
p is a subset of density

α = |A|/pn > 0, then A + A contains a coset of a subspace of dimension at least
α2n/(8p2).

[Hint: You may assume that for any function g : Fn
p × Fn

p → [−1, 1] and any subset
D ⊆ Fn

p ,

Ey∈Fn
p
sup
x∈D

|g(x, y)| ⩽ |D|1/q sup
x∈D

(
Ey∈Fn

p
|g(x, y)|q

)1/q
.]
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4 Let p ⩾ 2 be a prime and let n > 1 be an integer.

(a) Define the U3 inner product and the U3 norm for functions (fϵ : Fn
p → C)ϵ∈{0,1}3

and f : Fn
p → C, respectively. State the Gowers-Cauchy-Schwarz inequality.

(b) (i) Let A ⊆ Fn
p be a set of density α = |A|/pn > 0. Show that ∥1A∥U3(Fn

p )
⩾ α.

(ii) Let q : Fn
p → Fp be of the form q(x) = xTMx for some symmetric n×n matrix

M with entries in Fp, and let h : Fn
p → C be defined by h(x) = e2πiq(x)/p. Show

that ∥h∥U3(Fn
p )

= 1.

(iii) Let f : Fn
p → C. Show that if |⟨f, h⟩L2(Fn

p )
| ⩾ δ for some δ > 0, then

∥f∥U3(Fn
p )

⩾ δ.

Let N > 1 be an integer.

(c) Let S ⊆ Fn
p be a subset of density σ = |S|/pn > 0, and let ϕ : S → FN

p be a
function with the property that whenever x1, x2, x3, x4 ∈ S satisfy x1+x2 = x3+x4,
then ϕ(x1) + ϕ(x2) = ϕ(x3) + ϕ(x4). Let g : Fn+N

p → C be defined by g(x, y) =

1S(x)e
2πiϕ(x)T y/p.

Show that
∥g∥U3(Fn+N

p ) ⩾ σ.

State a theorem you could apply in this situation.
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