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(a) State the Lévy Reflection Theorem.

(b) Let φ be a sentence in the language of set theory and assume that for all finite T ⊆ ZFC
there is a finite T ∗ ⊆ ZFC such that if M is a countable transitive model of T ∗, then
there is a countable transitive model of N ⊇ M of T +φ. Show that Con(ZFC) implies
Con(ZFC+ φ).

If R ⊆ ω×ω, we call R a code if (ω,R) is a wellorder, i.e., is isomorphic to a unique
countable ordinal α, called the representation of R. A level of the constructible hierarchy
Lλ is called a coding level if

(i) λ is a limit ordinal,

(ii) every code in Lλ has a representation in Lλ, and

(iii) every ordinal in Lλ has a code in Lλ.

(c) Give a concrete example of a limit ordinal λ > ω such that Lλ is not a coding level.
Justify your answer.

(d) Assume V=L. What is the size of the set Γ := {λ < ω1 ; Lλ is a coding level}? Justify
your answer.

[In this question, you may use results proved in the lectures (in particular, the
existence of a condensation sentence σ such that for any transitive set X, X |= σ if and
only if X = Lλ for a limit ordinal λ > ω) as well as standard model-theoretic results (in
particular, the Löwenheim-Skolem theorem or the Mostowski collapsing lemma), provided
that you state them precisely and correctly.]
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2 In this question, let M be a countable transitive model of set theory, (P,⩽,1) be
a partial order in M , and G be P-generic over M .

(a) Briefly explain what Jerusalem notation refers to and give the definitions of “p, q ∈ P
are incompatible” and “D is dense in P” both in standard and Jerusalem notation.

(b) Show that the axiom schema of Replacement holds in the generic extension M [G].
[You may use the Lévy Reflection Theorem, the Forcing Theorem, and the fact that
the axiom schema of Separation holds in M [G] without proof.]

We write ω<ω for the set of finite sequences of natural numbers and ωω for the set
of functions from ω to ω.

For f, g ∈ ωω we say that g dominates f if the set {n ; g(n) ⩽ f(n)} is finite. Define
D := {(s, f) ; s ∈ ω<ω, f ∈ ωω} with (s, f) ⩽ (t, g) if and only if s ⊇ t, f(n) ⩾ g(n) for all
n, and if n ∈ dom(s)\dom(t), then s(n) ⩾ g(n).

(c) Prove that if G is D-generic over M , then there is some d ∈ ωω ∩M [G] such that d
dominates every function h ∈ ωω ∩M .

(d) Suppose that M |= CH and G is D-generic over M . Determine the value of 2ℵ0 in
M [G]. Justify your answer. [You may use any results proved in the lectures, provided
that you state them precisely and correctly.]
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