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1 (i) Let A → B →→ C = B/I be ring homomorphisms. Show that there is an exact
sequence of C-modules

I/I2 −→ ΩB/A ⊗B C −→ ΩC/A −→ 0

giving explicit descriptions of the maps.

(ii) Let K/k be a field extension, K[t] the polynomial algebra. Show that

ΩK[t]/k ≃ ΩK/k ⊗K K[t] ⊕ K[t].dt .

Now let L/K/k be field extensions, with L/K finite.

(a) Show that if L = K(b) is a simple extension of K, and f ∈ K[t] is the minimal
polynomial of b over K, then there is an exact sequence of L-vector spaces

L −→ ΩK/k ⊗K L ⊕ L.dt −→ ΩL/k −→ 0

in which the image of 1 ∈ L under the first map is of the form (∗, f ′(b) dt).

(b) Deduce that if L/K is separable, then ΩK/k ⊗K L
∼−−→ ΩL/k, and that for general

L/K (not necessarily simple) one always has dimLΩL/k ⩾ dimK ΩK/k. Give an
example for which dimLΩL/k > dimK ΩK/k.

2 (i) Let f : X → S = SpecA be a proper morphism, with A Noetherian. Let F be
a coherent OX -module which is A-flat.

State a theorem on the existence of a finite complex of finite locally free A-modules
computing the cohomology of F . Use it to show that:

(a) if S is connected then the Euler characteristic χ(Xs,Fs) is independent of s ∈ S;

(b) for every p ⩾ 0 and n ⩾ 0, the subset

{s ∈ S | dimκ(s)H
p(Xs,Fs) ⩾ n}

is closed.

(ii) Compute the Hilbert polynomial P (X,F , t) in each of the following cases (where k is
a field):

(a) X = P2
k, F = OX ;

(b) X ⊂ P2
k a smooth curve of degree m ⩾ 1, F = OX(D) for D a divisor on X of degree

d ∈ Z.
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(i) State a version of Mumford’s rigidity lemma. Let G be a k-group variety and X
an abelian variety over k. Suppose that f : X → G is a morphism of k-schemes such that
f(eX) = eG. Show that f is a homomorphism. Show that if X is only assumed to be a
group variety, then f need not be a homomorphism.

(ii) Let G be a k-group scheme, S any k-scheme and x ∈ G(S). Define the
left translation morphism Tx : G ×k S → G, and show that the product morphism
Tx/S = (Tx, pr2) : G×k S → G×k S is an isomorphism.

Show that there are isomorphisms

T ∗
xΩG/k

∼−−→ ΩG×kS/S = pr∗1ΩG/k

and
x∗ΩG/k

∼−−→ OS ⊗k ΩG/k(e)

of quasicoherent sheaves on G×k S and S, respectively.

Hence show that ΩG/k is a free OG-module.

4 In this question, all varieties are over an algebraically closed field k.

(i) State the Theorem of the Square.

(ii) Define the map ϕL : X(k) → PicX attached to a line bundle L on an abelian variety
X, and show that it is a homomorphism.

Show that Pic0X = {L ∈ PicX | ϕL = 0} is a subgroup of PicX, and that for every
L, im(ϕL) ⊂ Pic0X.

(iii) Let X1 and X2 be abelian varieties, and X = X1 ×k X2. Show that the map

τ : PicX1 × PicX2 → PicX, τ(L1,L2) = pr∗1L1 ⊗ pr∗2L2

is an injective homomorphism. Give an example to show that it is not in general
surjective.

(iv) Show that τ induces an isomorphism

Pic0X1 × Pic0X2
∼−−→ Pic0X .

[You may use without proof the fact that if L is ample then ϕL(X(k)) = Pic0(X).]
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