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1 (a) State and prove Hasse’s theorem for an elliptic curve E/Fp. [Any general results
about isogenies or quadratic forms may be quoted without proof provided you state them
clearly.]

(b) Define the zeta function ZE(T ) as a power series. Explain how your answer to
(a) can be used to compute it as a rational function.

(c) Find all primes p for which there exists an elliptic curve E/Fp with E(Fp) =
E(Fp2).

2 (a) Define a formal group and an isomorphism of formal groups. State and prove
a result classifying formal groups up to isomorphism over a field of characteristic zero.

(b) Let E/Q be the elliptic curve with equation y2 = x3 + x + 1. Show that if
P = (0, 1) then v2(x(2

mP )) = −2m for all integers m ⩾ 1.

Define the subgroups Er(Qp) ⊂ E(Qp) for all r ⩾ 1. Then show for this specific
elliptic curve that E1(Qp) ∼= (Zp,+) for all primes p. [Hint: When p = 2 it may help to
compute the kernel and image of the multiplication-by-2 map on E1(Q2).]

[Any results you need about formal groups, additional to those in (a), should be
clearly stated.]

3 (a) Let E be an elliptic curve. Prove that E is isomorphic to a curve in Weierstrass
form via an isomorphism taking OE to (0 : 1 : 0).

(b) Let C = {u3 + v3 + w3 = 0} ⊂ P2 and OC = (1 : −1 : 0). Find the points of
inflection on C and hence find a quadratic field K such that C(K)[3] ∼= (Z/3Z)2.

(c) Explain by quoting properties of the Weil pairing why the quadratic field K you
found in (b) is the only one that could possibly have worked. Show also that if p and ℓ are
primes and E/Fp is an elliptic curve with E(Fp)[ℓ] ∼= (Z/ℓZ)2 then #E(Fp) = 1 + p − a
with a ≡ 2 (mod ℓ).

(d) Put the elliptic curve C/Q in (b) in Weierstrass form. Let p ̸= 3 be a prime.
Show that C has good reduction at p and that C̃(Fp) is cyclic if and only if p ≡ 2 (mod 3).
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4 Let K be a number field and n ⩾ 2 an integer.

(a) Suppose that µn ⊂ K. Let ∆ ⊂ K∗/(K∗)n be a finite subgroup and let L be
the composite of all fields K( n

√
x) for x(K∗)n ∈ ∆. Define a pairing

Gal(L/K)×∆ → µn.

Show that your pairing is well defined, bilinear and non-degenerate.

(b) Suppose that E/K is an elliptic curve with E[n] ⊂ E(K). Let Γ ⊂ E(K)/nE(K)
be a finite subgroup and let L be the composite of all fields K([n]−1P ) for P +nE(K) ∈ Γ.
Define a pairing

Gal(L/K)× Γ → E[n].

Show that your pairing is well defined, bilinear and non-degenerate.

(c) Let S be a finite set of primes of K. Define the group K(S, n) and prove that
|K(S, n)| ⩽ n|S|+c where c is a constant depending only on K.

(d) Show that in (b) we have |Γ| ⩽ |K(S, n)|2 where S is a finite set of primes you
should specify. [Results from Kummer theory, or about elliptic curves over local fields,
may be quoted without proof provided that you state them clearly.]

5 (a) Describe the method of descent by 2-isogeny for computing the rank of an
elliptic curve. Briefly discuss the limitations of the method.

(b) Let E/Q be the elliptic curve y2 = x3 + 13x2 + 11x.

(i) Let P = (1, 5) and Q = (−1, 1). Compute the points 2P and P + Q. Show that if
(x, y) ∈ E(Q)tors with x ̸= 0 then (11/x,−11y/x2) ∈ E(Q)tors.

(ii) Find integers d1, d2 ⩾ 1 and r ⩾ 0 such that E(Q) ∼= Z/d1Z× Z/d2Z× Zr.
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