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(a) Define Heyting algebra.

(b) Show that every finite distributive lattice L is a Heyting algebra.

(c) What does the typed λ-term λp : ϕ×ψ. λf : ϕ→ (ψ → 0). ((fπ1(p)) π2(p)) correspond
to under the Curry-Howard correspondence?

(d) Can ∧ be defined in terms of → and ⊥ in intuitionistic propositional logic? Justify
your claim.

(e) Show that ¬(ϕ→ ¬ψ) → (ϕ ∧ ψ) is not intuitionistically valid.

[You may assume any results from the lectures that you accurately state without proof.]

(f) We say that a world w in a Kripke model W determines p if w ⊩ p or w ⊩ ¬p. Show
that if w determines all the primitive propositions within a proposition ϕ and w ⩽ w′,
then w ⊩ ϕ precisely when w′ ⊩ ϕ.
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(a) State the Church-Rosser Theorem for the untyped λ-calculus.

(b) State and prove the Weak Normalisation Theorem for the implicational fragment of
the simply typed λ-calculus λ(→).

(c) Define what it means for a λ-term F to λ-define a function f : Nk → N.

(d) Suppose λ-terms R and S define the same function. Must R and S be β-equivalent?
Justify your answer.

(e) Show that there is a λ-term δ such that L ≡βη (δ L) precisely when L is a fixed-point
combinator.
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(a) Define what is meant by Σ1 and Π1 formulae in the language of PA.

[You need not define ∆0-formulae.]

(b) Let f : Nk → N be a total function and T be a theory in the language of PA that
extends PA−. Explain what it means to say that “f is Σ1-represented in T”.

(c) State and prove the Diagonalisation Lemma for theories in the language of PA.

[You may assume that LPA is recursive and that all total recursive functions are Σ1-
represented in PA−.]

(d) Fix a Gödel numbering of the LPA-formulae and let M |= PA−. Show that there is
no LPA-formula θ(x) such that, for all n ∈ N, M |= θ(n) precisely when n is the Gödel
numbering of an LPA-sentence σ with M |= σ.

(e) State Tennenbaum’s Theorem.

(f) Suppose that a non-recursive set X is canonically coded in a countable modelM of PA
by some element c ∈M . Show that the multiplication operation inM cannot be recursive.

[For this item, you may use any results from the lectures or theorems of PA without proof.]
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