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1 Suppose that π : E → X is a holomorphic line bundle over a complex manifold X.
State precisely what it means for E to have a Hermitian inner product.

Suppose such a Hermitian inner product on E is given. State the definition of a
Chern connection on E with respect to this inner product. Give an expression for the
Chern connection in terms of this Hermitian inner product. [There is no need to prove
that this gives the unique Chern connection, but you should show that your formula is
well-defined].

Consider the line bundle E = O(−1) over CPn. Give an expression for a Hermitian
inner product on E and write down the connection 1-forms for the Chern connection on
E in holomorphic local coordinates on CPn. Use this to find a closed 2-form representing
the first Chern class of E.

2 Suppose Y is a closed (smooth) submanifold of a compact complex manifold X, and
let J be the almost-complex structure on TX. Prove that if the tangent space TpY ⊂ TpX
is a Jp-invariant subspace for every p ∈ Y , then Y is a complex submanifold of X.

Now suppose Y is a complex submanifold of X. Define the holomorphic normal
bundle of Y . State precisely the adjunction formula for a smooth hypersurface Y in X
and give a proof.

Now suppose X = CPn × CPm and Y ⊂ X is given by the vanishing locus of a
bihomogeneous polynomial F of bidegree (d1, d2). Give criteria on F and d1, d2 under
which Y will be a complex submanifold with trivial canonical bundle KY .

3 Suppose X is a compact connected complex manifold of dimension n and p ∈ X is
a point. Define the blowup σ : X̃ → X of X at the point p, and the exceptional divisor E
in X̃.

If Y ⊂ X is a smooth hypersurface, show that the proper transform Ỹ of Y , defined
as the closure of σ−1(Y \ {p}) in X̃, is a smooth hypersurface in X̃.

Define the holomorphic line bundle O(E) on X̃ associated to the divisor E. Show
that σ∗O(Y ) ∼= O(Ỹ +mE) as holomorphic line bundles and determine m ∈ Z.

Show that there is a bijection between the set of holomorphic sections of O(E), and
the set of meromorphic functions f on X̃ such that (f) + E ⩾ 0.
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4 Suppose X is a compact complex manifold with a Riemannian metric g. State
what it means for g to be a Kähler metric on X.

Now suppose g is a Kähler metric on X. Define the Lefschetz operator L :
C∞(X,∧p,qT ∗X) → C∞(X,∧p+1,q+1T ∗X) and its adjoint Λ. Show the Kähler identities
[L, ∂] = 0 and [L, ∂̄] = 0.

Define the Laplacians ∆, ∆∂ and ∆∂̄ and show that ∆ = 2∆∂̄ = 2∆∂ . [You may
assume the Kähler identity [Λ, ∂] = i∂̄∗].

Use this to show that Λk maps ∂-harmonic (p, q)-forms to ∂-harmonic (p−k, q−k)-
forms (for 0 ⩽ k ⩽ p, q ⩽ n). [You may use additional Kähler identities if you provide a
proof].
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