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1 (a) Let M be a manifold. What is meant by an embedding of a manifold N in M?

Explain, stating accurately any auxiliary results you require from the course, why
the inclusion map of Sn as the unit sphere in Rn+1 is an embedding.

Construct an embedding of the product of spheres Sn1 × . . .× Snk in Rn+1, where
n =

∑k
i=1 ni and ni ⩾ 1 for all i.

(b) Define the de Rham cohomology Hp(M) of a manifold M . State the Poincaré
lemma.

Assume that M is connected and let φ : U → Rn be a coordinate chart defined on
an open subset U ⊂ M and let B ⊂ U be such that φ(B) is a closed ball in Rn. For n > 1,
show that if H1(M \B) = 0 then H1(M) = 0. Does the result hold when n = 1? Justify
your answer.

By considering an appropriate nowhere-vanishing differential n-form on Sn, or
otherwise, show that Hn+1(Sn × I) = 0 for all n, where I ⊂ R is a non-empty finite
open interval.

[You may not use the de Rham theorem or any results from algebraic topology concerning
(co)homology groups of topological spaces.]
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2 (a) What is the wedge product of differential forms on a manifold?

Show that each η ∈ Λn−1((Rn)∗) can be written as ξ ∧ η0 for some ξ ∈ (Rn)∗ and
η0 ∈ Λn−2((Rn)∗), where n ⩾ 3.

Let M be a compact oriented manifold. Define the integral
∫
ω of a differential

n-form ω over M , where n = dimM . For a smooth map of manifolds φ : M → N define
the induced pull-back map φ∗ for the differential forms. Let ω be nowhere-zero and let
F : M → M be a diffeomorphism such that F ∗ω = ω. Show that∫

M
(h ◦ F )ω =

∫
M

hω

for all h ∈ C∞(M).

[You may assume the existence of a partition of unity if you accurately state this result.]

(b) Let now M be an oriented Riemannian manifold with a Riemannian metric g.
Explain what is meant by the inner product induced by g on the bundles ΛpT ∗M of
differential p-forms. Define the volume form ωg of g and the Hodge ∗-operator, showing
that ∗ is well-defined.

Deduce from Stokes’ theorem the expression for the formal L2 adjoint δ of the
exterior derivative d in terms of ∗ and d. Define the Laplace–Beltrami operator ∆ for the
differential forms on M .

Let f ∈ C∞(M) and let ∗f and ∆f denote the Hodge ∗-operator the Laplace–
Beltrami operator obtained using on M the Riemannian metric e2fg in place of g. For a
differential form α ∈ Ωp(M) determine ∗f (α) in terms of ∗α and f .

If f is constant, show that ∆fα = e−2f∆α for each differential form α on M .
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3 (a) Let E → B be a vector bundle over a manifold B. Show that E ⊗ ΛrT ∗B for
r = 1, 2, . . . is a well-defined vector bundle over B, by constructing an appropriate family
of local trivializations and transition functions.

Define a connection on E and a covariant derivative for the sections of E. Show
that every connection A on E induces a well-defined covariant derivative dA. Show, using
an appropriate version of the Leibniz rule, that the dA extends to a linear map (which we
still denote by dA) on sections of E ⊗ ΛkT ∗B. Give an explicit formulas of the latter dA
in local trivializations.

Define the curvature form F (A) of a connection A and determine the expression of
F (A) in terms of A in a local trivialization. State and prove the Bianchi identity for F (A).

(b) For a covariant derivative ∇ on E and a vector field X on B we write ∇X for
a composition of ∇ and the contraction of sections of E ⊗ T ∗B with X. Now let ∇ be
a covariant derivative on B (i.e. on the tangent bundle TB). Show that ∇ induces a
covariant derivative, still denoted by ∇, on T ∗B such that

X⟨α, Y ⟩ = ⟨∇Xα, Y ⟩+ ⟨α,∇XY ⟩

for all vector fields X,Y on B and all differential 1-forms α on B. Determine the relation
between the local coefficients of ∇ on T ∗B and on TB.

Define what it means for ∇ to be symmetric. Show that if ∇ is symmetric, then
(Alt ◦∇)α = dα for all α ∈ Ω1(B) where Alt denotes the projection from bilinear forms
on TpB to anti-symmetric bilinear forms on TpB (with the kernel being the symmetric
bilinear forms), for all p ∈ B.

4 (a) If π : E → M is a vector bundle endowed with a connection A and γ : [0, 1] → M
is a smooth curve, define the horizontal lift of γ from a point p ∈ E with π(p) = γ(0).
Show that the horizontal lift is determined in a local trivialization of E as a solution of a
linear ordinary differential equation.

Define a geodesic on a Riemannian manifold (M, g). Define the map expp and show
that its inverse defines local coordinates around p ∈ M . [You need not check that expp is
a smooth map.] Define a geodesic sphere centred at p.

State and prove Gauss’ lemma.

[You may assume without proof that the length of γ̇(t) is constant for any geodesic γ(t).]

(b) Show that there exists ε > 0 such that for X ∈ TpM with |X|g < ε the curve
γ(t) = expp(tX), 0 ⩽ t ⩽ 1, is a geodesic and any smooth curve σ : [0, 1] → M with

σ(0) = p, σ(1) = γ(1) has length(σ) ⩾ length(γ). Here length(σ) =
∫ 1
0 |σ̇(t)|gdt.

Assume now that dimM ⩾ 3. let X ⊂ M be an embedded submanifold with
dimX = dimM − 1 and let Σ be a geodesic sphere centred at p such that X ∩Σ consists
of one point q ̸= p. Show that TqX = TqΣ as subspaces of TqM .

If dimM = 2, must TqX = TqΣ hold true? Justify your answer.
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