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1 Let X be the space S2/∼ where ∼ is the smallest equivalence relation on the
standard 2-sphere S2 ⊂ R3 such that (a, b, 0) ∼ (−a,−b, 0) for all (a, b) ∈ S1.

(a) Define the cellular chain complex of a cell complex, showing carefully that it is indeed
a chain complex. State a lemma that expresses the differential in terms of degrees
of maps between spheres.

(b) Give a cell structure on X and use it to compute the cellular homology of X.

(c) Compute the local homology H∗(X,X \ {x}) for x = [(1, 0, 0)], carefully stating all
the theorems you use.

(d) Is X homotopy equivalent to a finite cell complex Y that has exactly one 2-cell?
Justify your answer.
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(a) Describe H∗(CPn;Z) as a graded ring for every positive integer n. Briefly justify
your answer.

(b) State the Künneth theorem and use it to compute H∗(CP2 × CP2;Z) as a ring.

Let X = (CP2 × CP2)/A be the quotient space obtained by collapsing the subspace

A = {(z, w) ∈ CP2 × CP2 | z = [1 : 0 : 0] or w = [1 : 0 : 0]} .

(c) Compute H∗(X;Z) as a ring.

(d) Show that there are no maps f : S4 → X and g : X → S4 such that g◦f is homotopic
to idS4 .
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(a) Define the compactly supported cohomology H∗
c (X) of a space X, justifying why it

is well-defined. Show that every proper map f : X → Y induces a well-defined map
f∗ : H∗

c (Y ) → H∗
c (X).

[Recall that a map f : X → Y is called proper if for every compact subspace K ⊂ Y
the preimage f−1(K) is also compact.]

(b) State a description of H∗
c (X) as a colimit of relative cohomology groups and use it

to show that there is an isomorphism H∗
c (Rn) ∼= H∗(Rn,Rn \ {0}) for all positive

integers n.

Fix a positive integer n and let f : Cn → Cn be a proper map satisfying f(λv) = λf(v)
for all λ ∈ C and v ∈ Cn.

(c) Show that f induces a well-defined map f : CPn−1 → CPn−1 and an isomorphism of
complex vector bundles f

∗
γC1,n

∼= γC1,n.

(d) Show that f∗ : H∗
c (Cn) → H∗

c (Cn) is the identity. [You may use that complex vector
bundles are Z-oriented and isomorphisms of complex vector bundles respect these
orientations.]

4 Let d be a positive integer and M be a compact, oriented d-manifold.

(a) Define the cap product. [You do not have to check that it is well-defined.] What
does it mean to say that a homology class [M ] ∈ Hd(M) is a fundamental class?
Assuming that such a fundamental class is given, state the Poincaré duality theorem
for M and describe the map involved.

Suppose that M = U ∪ V for two contractible open subsets U, V ⊂ M .

(b) State the small simplex theorem for this open cover.

(c) Show that [M ] ⌢ α = 0 for all α ∈ Hk(M ;Z) where 0 < k < d. Deduce that

Hi(M) ∼=

{
Z if i = 0, d,

0 otherwise.
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