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1 Let X be a topological space and j : U ↪→ X the inclusion of an open subset. Let
F be a sheaf of abelian groups on U . Define the extension by zero of F to be the sheaf
j!F associated to the presheaf jpF on X defined by

(jpF)(V ) =

{
F(V ) if V ⊆ U ;

0 otherwise.

(a) Give an example to show that jpF need not be a sheaf. Show that j!F has stalks
given by

(j!F)P =

{
FP if P ∈ U ;

0 otherwise.

(b) For sheaves of abelian groups F on U and G on X, construct a natural morphism

j!j
−1G → G.

Show that there is a natural isomorphism

F
∼=−→ j−1j!F .

[Note: You may use freely that since j is an inclusion of an open set, j−1G agrees with
the restriction G|U .]

(c) Let Z = X \ U and i : Z ↪→ X be the inclusion. Let G be a sheaf of abelian
groups on X. Show that there is an exact sequence of sheaves

0 → j!j
−1G → G → i∗i

−1G → 0.

(d) Suppose further that X is a scheme, U ⊆ X an open subscheme. Show that
j!OU need not be a quasi-coherent sheaf on X.
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2 Let S =
⊕

n⩾0 Sn be a graded ring, S+ =
⊕

n>0 Sn.

(a) Define the projective scheme ProjS.

(b) Define what it means for a morphism of schemes i : Z → X to be a closed
immersion.

Show that if I ⊆ S is a homogeneous ideal of S with I ⊆ S+, then ProjS/I comes
with a natural closed immersion into ProjS. [Feel free to quote results from lecture or the
example sheets for this question.]

(c) Suppose I ⊆ S is a homogeneous ideal with I ⊆ S+, I =
⊕

n⩾1 In with
In = I ∩ Sn. Define

I ′ =
⊕
n⩾n0

In

for some non-negative integer n0. Show that ProjS/I and ProjS/I ′ define the same closed
subscheme of ProjS.

3 (a) LetX be a Noetherian integral separated scheme which is regular in codimension
one. Define a prime (Weil) divisor on X. Given a prime divisor Y , explain how to define
a group homomorphism

νY : K(X)∗ → Z

capturing the notion of order of vanishing along Y .

(b) LetX be a Noetherian integral separated scheme which is regular in codimension
one. Let Z ⊆ X be a closed subset which is the union of prime divisors Z1, . . . , Zn. Let
U = X \ Z. Show that there is an exact sequence

Zn → Cl(X) → Cl(U) → 0.

(c) Now let k be an algebraically closed field and let

X = Proj
(
k[x0, x1, x2, x3]/(x

3
3 − x0x1x2)

)
.

Let Li = V (xi, x3) ⊆ X, i = 0, 1, 2. You may take as given without proof that:
(1) X is a Noetherian integral separated scheme which is regular in codimension one, and
(2) Li ⊆ X is a prime divisor.

Let f = x0/x3 ∈ K(X). Calculate νLi(f) for i = 0, 1, 2.

Calculate Cl(X).
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4 (a) Let X be a topological space, U an open covering of X, and F a sheaf on X.
Define the Čech cohomology of F with respect to the cover U , Ȟp(U ,F).

(b) Let k be a field. Show that Pn
k does not have a cover by n affine open subsets.

(c) Let X be a scheme with an open cover U . Denote by Pic(U) the group of
line bundles on X up to isomorphism for which U is a trivializing cover. Show that
Pic(U) ∼= Ȟ1(U ,O∗

X), where O∗
X denotes the sheaf of invertible sections of OX .

(d) Let X be an integral scheme. Define what it means to give a Cartier divisor
on X. What does it mean for two Cartier divisors to be linearly equivalent? Define the
Cartier class group CaClX of X.

Recall a sheaf F is flasque if all restriction homomorphisms F(U) → F(V ) are
surjective. Using the fact that if F is flasque, H i(X,F) = 0 for i > 0, show the
isomorphism

CaClX ∼= H1(X,O∗
X).
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