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(a) Let A be a commutative, unital Banach algebra. Define what is meant by a
character on A. Define the character space ΦA of A. Prove that characters are continuous.
[You may assume results about elementary spectral theory of general Banach algebras.]

Show that every maximal ideal of A is closed and is the kernel of a character of A.
Deduce that the spectrum of an element x ∈ A is given by

σA(x) = {φ(x) : φ ∈ ΦA} .

Define the Gelfand topology of ΦA and the Gelfand map x 7→ x̂ : A → C(ΦA). Show that
the Gelfand map is a continuous, unital homomorphism.

(b) State the Holomorphic Functional Calculus for an element x of a commutative
unital Banach algebra A. Let f(x) be the image of f under the Holomorphic Functional
Calculus. Describe how f(x) is defined and use this to prove that

σA(f(x)) = {f(λ) : λ ∈ σA(x)} .

Let Ω be the unbounded component of C \ σA(x). Assuming that f is defined on an open
neighbourhood of C \ Ω, show that |f(z)| ⩽ ∥f(x)∥ for all z ∈ C \ Ω.

(c) Let B be a unital Banach algebra and x ∈ B. For a closed unital subalgebra A
of B with x ∈ A, describe topologically how σA(x) is obtained from σB(x) in general.

Let A be the closed unital subalgebra of B generated by x. Set K = σA(x). Prove
that C \K is connected. [Hint: Argue by contradiction. Fix λ in a bounded component
of C \K and approximate the unit 1 of A by a polynomial q(x) in x with q(λ) = 0.]

Show thatK is homeomorphic to ΦA. IdentifyingK with ΦA, show that the Gelfand
map becomes a map θ : A → C(K) that satisfies θ(f(x)) = f↾K for any function f that
is holomorphic on some open set containing K. Deduce that any such function f can be
uniformly approximated on K by a polynomial.
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Throughout this question, X is a Banach space whose dual space X∗ is separable.

(a) Show that X is separable, BX∗ is w∗-metrizable and BX is w-metrizable.

(b) Show that xn
w−→ x in X if and only if f(xn) → f(x) for all f ∈ X∗. Show that

every bounded sequence (xn) in X has a subsequence (yn) such that limn f(yn) exists for
all f ∈ X∗. Deduce that the difference sequence (y2n−y2n−1) is weakly null, i.e., converges
weakly to zero.

Suppose that for each m ∈ N, a weakly null sequence ym = (ym,n)n in BX is given.
Explain briefly why there is a weakly null sequence z = (zn) in X of which ym is a
subsequence for all m ∈ N.

(c) Fix a w∗-closed subset K of BX∗ and ε > 0. Define

K ′
ε = {f ∈ K : for all w∗-neighbourhoods U of f , diam(U ∩K) > ε}

where diamA is the ∥·∥-diameter of a set A defined by diamA = sup{∥x− y∥ : x, y ∈ A}.

(i) Show that K ′
ε is a w∗-closed subset of K.

(ii) Show that for each f ∈ K ′
ε there is a sequence (gn) in K such that gn

w∗
−→ f and

∥gn − f∥ > ε/2 for all n.

(iii) Fix f ∈ K ′
ε. Show that there is a sequence (gn) in K and (xn) in BX such that

gn
w∗
−→ f , |(gn − f)(xn)| > ε/2 for all n and |(gn − f)(xm)| < ε/4 for all m,n with m < n.

Deduce that there is a sequence (gn) in K and a weakly null sequence (yn) in BX such

that gn
w∗
−→ f and |gn(yn)| > ε/16 for all n.

(iv) Explain why K ′
ε is w∗-separable. Let {fm : m ∈ N} be w∗-dense in K ′

ε. For
each m ∈ N, let (ym,n)n be a weakly null sequence in BX and (gm,n)n be a sequence in K

such that gm,n
w∗
−→ fm as n → ∞ and |gm,n(ym,n)| > ε/16 for all n. Let (zn) be a weakly

null sequence as in part (b) above. For N ∈ N let

AN = {f ∈ K : |f(zn)| ⩽ ε/20 for all n ⩾ N} .

Show that if K ̸= ∅, then AN has non-empty w∗-interior in K for some N . [Hint: Baire
category.] Deduce that if K ̸= ∅, then K ′

ε ⊊ K.
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Denote by S∞ the C∗-algebra B(ℓ2) of bounded linear operators on (the complex
Hilbert space) ℓ2 and by (en) the standard orthonormal basis of ℓ2.

(a) Let A be a unital C∗-algebra. Define the notion of a positive element of A.
Prove that a positive element x ∈ A has a unique positive square root x1/2. Show that if
T ∈ S∞ is positive, then ⟨Tx, x⟩ ⩾ 0 for all x ∈ ℓ2.

Let T ∈ S∞. Set |T | = (T ∗T )1/2. Show that ker|T | = kerT . We say that U ∈ S∞ is
a partial isometry if ∥Ux∥ = ∥x∥ for all x ∈ (kerU)⊥. Prove the polar decomposition for
T : there exists a partial isometry U such that T = U |T | and kerU = kerT . [Hint: Define
U on im|T | first. Note that im|T | = (kerT )⊥.]

Let T ∈ S∞ and consider its polar decomposition T = U |T |, where U is a partial
isometry with kerU = kerT . Show that U∗T = |T |. [Hint: Consider ⟨U∗Tx, y⟩ with
y ∈ im|T | and y ∈ kerT .]

(b) For T ∈ S∞, set ∥T∥2 =
(∑∞

n=1∥Ten∥2
)1/2

and ∥T∥1 = ∥|T |1/2∥22. Define

S2 = {T ∈ S∞ : ∥T∥2 < ∞} and S1 = {T ∈ S∞ : ∥T∥1 < ∞}. Prove the following
statements for S, T ∈ S∞.

(i) ∥T∥2 = ∥T ∗∥2 [Hint: Parseval’s identity.]

(ii) ∥ST∥2 ⩽ ∥S∥∥T∥2 and ∥TS∥2 ⩽ ∥T∥2∥S∥ (where ∥·∥ is the operator norm).

(iii) ∥T∥1 =
∑∞

n=1⟨|T |en, en⟩.

(iv) If T = AB with A,B ∈ S2, then T ∈ S1 and ∥T∥1 ⩽ ∥A∥2∥B∥2. [Hint: Use
polar decomposition and (iii).]

(v) If T ∈ S1, then there exist A,B ∈ S2 such that T = AB and ∥T∥1 = ∥A∥2∥B∥2.
[Hint: Use polar decomposition.]

(vi) If T ∈ S1, then ST ∈ S1 and ∥ST∥1 ⩽ ∥S∥∥T∥1. [Hint: Use (v).]

(c) Let T ∈ S1. Show that
∑∞

n=1⟨Ten, en⟩ is absolutely convergent. [Hint:
Use (b)(v).] Show that the trace tr(T ) of T defined by tr(T ) =

∑∞
n=1⟨Ten, en⟩ satisfies

|tr(T )| ⩽ ∥T∥1.

For x, y ∈ ℓ2 denote by x⊗ y the operator in S∞ defined by

(x⊗ y)(z) = ⟨z, y⟩x (z ∈ ℓ2).

Show that ∥x ⊗ y∥1 = ∥x∥∥y∥ and tr(x ⊗ y) = ⟨x, y⟩. [Hint: Begin by computing |x ⊗ y|
for unit vectors x, y. Then use (b)(iii) and Parseval’s identities.]

(d) For S ∈ S∞ show that ∥S∥ = sup{|tr(ST )| : ∥T∥1 ⩽ 1}. [Hint: For one
direction, consider T = x⊗ y for unit vectors x, y.]

Assume that S1 is a normed space with ∥·∥1 as its norm. Show that S∞ embeds
isometrically into the dual space S∗

1 . Show that this embedding is surjective, i.e. that
S∞ = S∗

1 , if and only if the space F of finite-rank operators is dense in S1. [Hint: In
one direction, given f ∈ S∗

1 , consider a sesquilinear form on ℓ2. You may assume that F
consists of finite sums of operators of the form x⊗ y.]
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(a) Let (X,P) be a real locally convex space. Define the dual space X∗ of X.

Let Y be a subspace of X. Show that for all g ∈ Y ∗ there exists f ∈ X∗ such that
f↾Y = g. Show further that if Y is closed and x0 ∈ X \ Y , then there exists f ∈ X∗ such
that f↾Y = 0 and f(x0) ̸= 0. [Characterizations of the continuity of linear functionals on X
and the algebraic versions of the Hahn–Banach theorems may be assumed without proof.]

State and prove the Hahn–Banach theorem about the separation of a point and an
open convex set in X. [Properties of Minkowski functionals may be used without proof.]

The weak topology σ(X,X∗) of X is called the weak topology of X. Prove that a
closed convex subset K of X is weakly closed. [You may assume without proof any version
of the Hahn–Banach separation theorems.] Show that if X is an infinite-dimensional
normed space, then the unit sphere SX is closed but not weakly closed. What is the
weak-closure of SX in X?

(b) Let (X,P) and (Y,Q) be locally convex spaces. LetR be the family of seminorms
on X ×Y of the form (x, y) 7→ p(x) (p ∈ P) and (x, y) 7→ q(y) (q ∈ Q). Verify briefly that
the topology of the locally convex space (X×Y,R) is the product topology. Identify, with
brief justification, the dual space of X × Y .

Let K1, . . . ,Kn be open convex subsets of X such that
⋂n

i=1Ki = ∅. Show that
there is a continuous linear map T : X → Rn−1 such that

⋂n
i=1 T (Ki) = ∅. [Hint: consider

a suitable open convex set K in Xn−1 with 0 /∈ K.]

(c) [In answering the questions below, you may use any result from the course.
Other results used need to be proved.]

Let T : X → Y be a bounded linear map between Banach spaces. Show that if X
is reflexive, then T (BX) is closed.

Let ∥·∥1 and ∥·∥2 be two norms on a vector space V . Let Xj be the normed space
(V, ∥·∥j) for j = 1, 2. Show that if X∗

1 = X∗
2 , then the two norms are equivalent. [Hint:

Consider the closed unit balls Bj of Xj (j = 1, 2).]
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