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(a) Consider the equation

∂tu = −∂xv, ∂tv = ∂xu, u(0, x) = f(x), v(0, x) = g(x), (1)

on the unknown (u(t, x), v(t, x)) valued in R2 and depending on two variables (t, x) in
R2, with f and g real-analytic near x = 0. State the Cauchy-Kovalevskaya theorem for a
PDE with a real-valued unknown, and show how it implies that (1) admits a real-analytic
solution (u, v) in a neighborhood of (0, 0).

(b) Consider the equation (1) again, and assume that f and g are smooth but not
real-analytic near x = 0. Show that the equation then admits no C1 solution in any
neighborhood of (0, 0).

[Hint: You might want to study the equation satisfied by u+ iv.]

(c) Given U ⊂ Rn open and bounded with C1 boundary, consider the equation

−∂i
(
aij∂ju) = f in U , aij∂juNi = 0 on ∂U (2)

with f ∈ L2(U) ∩ C1(U), aij = aij(x) measurable and bounded so that aij(x)ξiξj ⩾ θ|ξ|2
for some θ > 0 for any x ∈ U , ξ ∈ Rn, and N = N(x) normal outgoing vector on ∂U . A
classical solution is a function u ∈ C2(U) that satisfies (2) pointwise. A weak solution is a
function u ∈ H1(U) that satisfies (denoting by Di the weak derivative in the direction xi)

∀ v ∈ H1(U),
∫
U
aijDiuDjv =

∫
U
fv.

Prove that u ∈ C2(U) ∩H1(U) is a weak solution if and only if it is a classical solution.

(d) Show that a weak (or classical) solution to (2) exists if and only if
∫
U f = 0, and

comment on the uniqueness of this solution in that circumstance.

[Hint: You might want to apply the Lax-Milgram theorem in the Hilbert space H1
† (U) =

H1(U) ∩ {
∫
U u = 0}, which requires proving the Poincaré-Wirtinger inequality ∥u∥L2(U) ⩽

C∥Du∥L2(U) for some C > 0 in H1
† (U). Approaches based on the Fredholm theory are also

acceptable.]
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(a) Give the definition of weak (generalised) derivatives and the Sobolev space
W 1,p(U) for U ⊂ Rn open and p ∈ [1,+∞].

(b) Prove that if u ∈ W 1,p((0, 1)) for some 1 ⩽ p < +∞, then u is equal almost
everywhere to an absolutely continuous function, which is differentiable almost everywhere
with derivative in Lp.

[Hint: We recall that an absolutely continuous function f is a function so that f(x) =
f(a) +

∫ x
a g for some Lebesgue integrable g.]

(c) Given U := (0,∞) × R, prove that for any u ∈ W 1,p(U) there is a sequence
uj ∈ C∞(U) so that uj → u in W 1,p(U).

[You can assume the existence of a family of standard mollifiers and the smoothness
induced by convoluting with such mollifiers, and you can use without proof results about
the convergence of the translation in Lebesgue spaces if properly stated.]

(d) Given U := (0,∞) × R, construct an extension operator E so that for any
u ∈ W 1,p(U), Eu ∈ W 1,p(R2) with (Eu)|U = u and E : W 1,p(U) → W 1,p(R2) is a linear
bounded operator.

[Hint: You might want to start with u ∈ C∞(U) and use the previous question.]

(e) Given U := (0,∞)×R, construct a trace operator T so that for any u ∈ W 1,p(U),
Tu ∈ Lp(R) with (Tu)|∂U = u|∂U for any u ∈ W 1,p(U)∩C∞(U), and T : W 1,p(U) → Lp(R)
is a linear bounded operator.

(f) State the Rellich-Kondrachov theorem. Is the unit ball of W 1,1(R+) compact in
L1(R+)? (If so, prove it, otherwise provide a counter-example.)
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Given F = F (t, x) ∈ C1(R+×R) real-valued so that ∂xF is bounded, g ∈ C1(R+×R)
real-valued and u0 ∈ C1(R) real-valued, we consider the following equation

∂tu+ F (t, x)∂xu = g, u(0, ·) = u0(·) (1)

on the real-valued unknown u = u(t, x) for t ⩾ 0 and x ∈ R.

(a) Define the characteristic trajectories associated with equation (1). Prove that
these trajectories exist for all t ⩾ 0 and deduce the existence and uniqueness of a classical
solution u ∈ C1(R+ × R) to the previous equation.

(b) Given u0 ∈ L∞(R), define a notion of weak solution u ∈ L∞(R+ × R) to
equation (1). Show that, when u0 ∈ C1(R)∩L∞(R), any such weak solution that is C1 is
in fact the classical solution of the previous question.

(c) When u0 is merely L∞(R) and g = 0, prove the existence of a weak solution
u ∈ L∞(R+ × R) by using the characteristic trajectories.

(d) Now consider the nonlinear equation

∂tu+ a∂xu = u2, u(0, x) = cosx,

where a > 0 is a constant. Do classical solutions exist for all t ⩾ 0? If not provide the
first time when the solution becomes infinite.

(e) Adapt your definition of a weak solution in (b) to give a definition of a weak
solution u ∈ L∞(R+ × R) to the quasilinear problem

∂tu+ u∂xu = 0, u(0, ·) = u0 ∈ L∞(R).

When u0 = 0, exhibit several weak solutions and therefore prove that weak solutions are
not unique.

[Hint: Prove first that for an a priori piecewise constant solution, on a line of discontinuity
x = σt with different values u− and u+ left and right of the line, one has σ = (u−+u+)/2.]
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