MAMA/102, NST3AS/102, MAAS/102

MAT3 MATHEMATICAL TRIPOS Part III

Thursday 5 June 2025 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 102

LIE ALGEBRAS AND THEIR REPRESENTATIONS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS

Triangular graph paper (3 sheets)

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C} . In your answers below, you may quote results from the course as long as you clearly state them.

- (a) Define the *adjoint representation* and the Killing form $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ of \mathfrak{g} .
- (b) What does it mean for a subset $I \subset \mathfrak{g}$ to be an *ideal* of \mathfrak{g} ? What does it mean for \mathfrak{g} to be *nilpotent*? Show that if \mathfrak{g} is nilpotent, then κ is identically zero.
- (c) Define what it means for \mathfrak{g} to be *solvable*. Let $\mathfrak{g}^{\perp} = \{x \in \mathfrak{g} \colon \kappa(x, y) = 0 \text{ for all } y \in \mathfrak{g}\}$. Show that if \mathfrak{g} is solvable, then $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g}^{\perp}$. Give an example of a solvable \mathfrak{g} whose Killing form is not identically zero.
- (d) Show that \mathfrak{g}^{\perp} is a solvable ideal of \mathfrak{g} for every \mathfrak{g} .
- (e) Define what it means for \mathfrak{g} to be *simple*. Suppose that \mathfrak{g} is simple and let $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ be a nondegenerate bilinear form satisfying B([x, y], z) + B(y, [x, z]) = 0 for all $x, y, z \in \mathfrak{g}$. Show that there is a nonzero scalar $c \in \mathbb{C}$ such that $\kappa = cB$.
- (f) Let E_{ij} be the 3 × 3 matrix with 1 at position (i, j) and zeroes everywhere else. Compute the determinant of the Killing form of $\mathfrak{sl}_3(\mathbb{C})$ with respect to the standard basis $\{E_{11} - E_{22}, E_{22} - E_{33}, E_{12}, E_{13}, E_{23}, E_{21}, E_{31}, E_{32}\}$.

2 Let *E* be an ℓ -dimensional Euclidean space and let $\Phi \subset E$ be a root system. In your answers below, you may quote results from the course as long as you clearly state them.

- (a) What is a Weyl chamber? What does it mean for a subset $\Delta \subset \Phi$ to be a root basis? Briefly describe the construction of root bases Δ_{γ} for certain elements γ (proofs are not required).
- (b) Let Δ be a choice of root basis with associated dominant Weyl chamber $\mathcal{C}(\Delta)$. Let W be the Weyl group of Φ . Prove that W acts transitively on the set of root bases of Φ .
- (c) Recall that each element $\alpha \in \Delta$ determines a simple reflection $w_{\alpha} \in W$. Recall also that if $w \in W$, then $\ell(w)$ equals the minimal integer $n \ge 0$ with the property that w is a product of n simple reflections. You may use without proof the fact that $\ell(w) = |w(\Phi^+) \cap \Phi^-|$. Suppose that λ, μ lie in the closure of $\mathcal{C}(\Delta)$ and that $w \in W$ has the property that $w(\lambda) = \mu$. Using induction on $\ell(w)$ or otherwise, prove that w equals a product of simple reflections that each fix λ .
- (d) Show that for each $\lambda \in E$, the *W*-orbit of λ contains a unique representative that lies in the closure of $\mathcal{C}(\Delta)$.

3 Let $\mathfrak{g} = \mathfrak{so}_5(\mathbb{C}) = \{X \in \mathfrak{gl}_5(\mathbb{C}) \colon X^t J + J X = 0\}$ where $J = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$

Let $\mathfrak{t} \subset \mathfrak{g}$ be the subspace of diagonal matrices. For the first four parts, you do not need to describe proofs for your answers.

- (a) Explicitly describe the roots $\Phi \subset \mathfrak{t}^*$.
- (b) Find a root basis Δ . Draw the Dynkin diagram of Φ and label it with the elements of Δ .
- (c) Let W be the Weyl group of Φ . If $\alpha \in \Phi$, let $w_{\alpha} \in \Phi$ be the reflection associated to α . Describe the action of w_{α} on Δ for each $\alpha \in \Delta$.
- (d) Write the highest root β as a linear combination of elements of Δ . Compute $\langle \alpha, \dot{\beta} \rangle$ for every $\alpha \in \Delta$.
- (e) Prove that $\mathfrak{so}_5(\mathbb{C}) \simeq \mathfrak{sp}_4(\mathbb{C})$. You may use results from the course without proof, provided you state them clearly.

4 Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over \mathbb{C} with Cartan subalgebra $\mathfrak{t} \subset \mathfrak{g}$, root system $\Phi \subset \mathfrak{t}^*$ and basis of simple roots $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$. Let $\omega_1, \ldots, \omega_\ell$ be the fundamental weights.

- (a) If λ is a dominant integral weight, let $V(\lambda)$ be the unique (up to isomorphism) irreducible representation of \mathfrak{g} with highest weight λ . State the Weyl dimension formula for $V(\lambda)$, briefly defining the notation you use.
- (b) We say a representation of \mathfrak{g} is *fundamental* if it is isomorphic to $V(\omega_i)$ for some *i*. Suppose that V is irreducible, nontrivial and dim V is minimal among the irreducible nontrivial representations of \mathfrak{g} . Show that V is fundamental.
- (c) Show that every irreducible finite-dimensional representation of \mathfrak{g} is a subrepresentation of some representation of the form $V_1 \otimes \cdots \otimes V_k$, where $k \ge 1$ and each V_i is fundamental.
- (d) Explicitly describe the fundamental representations for $\mathfrak{sl}_3(\mathbb{C})$.
- (e) Let V be the defining representation of $\mathfrak{sl}_3(\mathbb{C})$ and let $\mathfrak{t} \subset \mathfrak{sl}_3(\mathbb{C})$ be the subset of diagonal matrices. Find dominant weights $\lambda_1, \ldots, \lambda_k \in \mathfrak{t}^*$ such that $V \otimes V \otimes V^* \simeq V(\lambda_1) \oplus \cdots \oplus V(\lambda_k)$. [Graphing paper might be useful.]

5 Briefly state (but do not prove) the classification of finite-dimensional representations of $\mathfrak{sl}_2(\mathbb{C})$.

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over \mathbb{C} with Cartan subalgebra $\mathfrak{t} \subset \mathfrak{g}$, root system $\Phi \subset \mathfrak{t}^*$ and root basis $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$. Let V be a finite-dimensional representation of \mathfrak{g} . If $\lambda \in \mathfrak{t}^*$, define the λ -weight space as $V_{\lambda} = \{v \in V : t \cdot v = \lambda(t)v \text{ for all } t \in \mathfrak{t}\}.$

- (a) Define the weight lattice X ⊂ t*. Suppose that λ ∈ t* satisfies V_λ ≠ 0. Show that λ lies in the weight lattice, and show that V_{w(λ)} ≠ 0 for all w in the Weyl group W. [If you wish, you may assume the existence, for each α ∈ Φ, of a subalgebra m_α = span{e_α, h_α, f_α} with e_α ∈ g_α, h_α ∈ t and f_α ∈ g_{-α} each nonzero and satisfying [h_α, e_α] = 2e_α, [h_α, f_α] = -2f_α and [e_α, f_α] = h_α.]
- (b) Recall that for $\mu \in \mathfrak{t}^*$ we define the *multiplicity* of μ as $\operatorname{mult}(\mu) = \dim(V_{\mu})$. Give an example of a \mathfrak{g} , an irreducible V and a $\mu \in \mathfrak{t}^*$ as above with $\operatorname{mult}(\mu) \geq 2$.
- (c) Define the partial order \leq on \mathfrak{t}^* . Suppose μ, λ are weights of V with μ dominant and with $\mu \leq \lambda$. Show that $\operatorname{mult}(\mu) \geq \operatorname{mult}(\lambda)$.

END OF PAPER