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1 Let R be a nonzero commutative ring.

i. State the universal property of the tensor product of modules over R.

ii. Suppose A and B are torsion-free abelian groups. Must A ⊗Z B be a torsion-free
abelian group? Give a proof or counter-example as appropriate.

iii. Suppose M is an R-module and (Ni)
∞
i=1 is a sequence of R-modules. Must the R-

modules M ⊗R
∏∞

i=1Ni and
∏∞

i=1 (M ⊗R Ni) be isomorphic?
Give a proof or counter-example as appropriate.

iv. Prove that the following conditions on R are equivalent:

(a) For all R-modules M and N , if M ⊗R N = 0 then M = 0 or N = 0.

(b) R is a local ring with maximal ideal m, and for every R-module M , if mM = M
then M = 0.

v. Let A be an R-algebra, and I, J ideals of R.
Consider the following two statements:

Ie ∩ Je ⊂ (I ∩ J)e (1)

Ie ∩ Je ⊃ (I ∩ J)e (2)

[ (·)e denotes extension along the ring homomorphism R → A. ]

(a) Show that both statements are true if A is flat as an R-module.

(b) For each of the statements, determine whether it is true in general by providing
a proof or a counter-example.
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2 Let R be a nonzero commutative ring.

i. Define the notion of a multiplicative subset S of R.
State the universal property of the localization of a ring R with respect to a
multiplicative subset S.

ii. State and prove the following result: Flatness is a local property of R-modules.

iii. Let A ⊂ B be an integral extension of rings and p ∈ specA.

(a) Define the ring Bp, and prove that there is a bijection

{q ∈ specB | q ∩A = p} ↔ mspecBp

given by extension and contraction along the localization map B → Bp.

(b) Show that the statement of (a) is false in general if the extension A ⊂ B is not
assumed to be integral.

iv. Let I be an ideal of R, and consider the multiplicative set S = 1+I = {1 + r | r ∈ I}.
For a maximal ideal m of R/I, let f(m) = (mc)e, where the contraction is taken
along the quotient map R → R/I, and the extension along the localization map
R → S−1R. Prove that f(m) is a maximal ideal of S−1R, and that f is a bijection
mspec (R/I) → mspec

(
S−1R

)
.
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i. State both the weak and strong forms of the Nullstellensatz, explaining all the
notation you use.

Prove the Weak Nullstellensatz.

ii. Prove that every maximal ideal of Q [T1, . . . , Tn] is the contraction of a maximal
ideal of C [T1, . . . , Tn].

iii. Consider the ideal a =
(
XY 3, X2 (Y − 3)

)
of the polynomial ring R [X,Y ]. Write

down a finite list of polynomials generating the ideal
√
a of R [X,Y ].

iv. Let A be a finitely generated C-algebra. Prove that the cardinality of the set
homC (A,C), consisting of all C-algebra homomorphisms A → C, is not exactly
ℵ0.
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i. Define the following notions:
The height of an ideal (not necessarily prime).
The Krull dimension of a ring.

ii. Let (A,m) be a noetherian local ring.

(a) Define the associated graded ring Gm (A).
[ Note: Define the underlying additive group, and give enough information to
deduce how to multiply elements, but do not prove anything. ]

Define the number d (Gm (A)).
[ Hint: This is the order of some pole. You may need to cite a theorem from
the lectures to explain the definition. ]

State the Dimension Theorem for noetherian local rings, explaining all the
notation you use.

(b) For x ∈ m, not a zero divisor, prove that d
(
Gm/(x) (A/ (x))

)
⩽ d (Gm (A))− 1.

iii. Let f, g ∈ C [X,Y ] be nonzero polynomials with no common irreducible factor. Prove
that the ring R = C [X,Y ] / (f, g) is artinian.
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i. Define the notion of a discrete valuation, and use it to define the notion of a discrete
valuation ring.

Define the notion of a Dedekind domain (choose one characterization from the
lectures).

ii. Let (A,m) be an integrally closed noetherian local domain of Krull dimension 1.
Prove that m is a principal ideal.

iii.

(a) Prove that the localization of a noetherian ring w.r.t. any multiplicative subset
is a noetherian ring.

(b) Let A be a Dedekind domain, and S ⊂ A a multiplicative subset, 0 /∈ S. Prove
that S−1A is a Dedekind domain or a field.
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