MAMA/358, NST3AS/358, MAAS/358

MAT3 MATHEMATICAL TRIPOS Part III

Thursday 6 June 2024 $\,$ 9:00 am to 11:00 am $\,$

PAPER 358

INFINITE DIMENSIONAL SPECTRAL COMPUTATION

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{1}$

- (a) Define, in terms of the solvability complexity index, the notion of a computational problem $\{\Xi, \Omega, \mathcal{M}, \Lambda\}$. As an example, give the classical computational spectral problem concerning bounded operators on $l^2(\mathbb{N})$ and give a reason for your choice of the metric space \mathcal{M} .
- (b) Define a general algorithm. Define the solvability complexity index (SCI) of a problem in this model of computation. Prove that the SCI of the classical computational spectral problem (for the whole class of bounded operators on $l^2(\mathbb{N})$) is at least 3. You may use a suitable decision problem and its SCI discussed in lectures, as long as these results are clearly stated.
- (c) Let $\Omega_{\mathcal{U}}$ be the class of unitary operators on $l^2(\mathbb{N})$. Show that there exists a sequence of arithmetic algorithms $\{\Gamma_n\}_{n\in\mathbb{N}}$ that use the entries of any $A \in \Omega_{\mathcal{U}}$ (with respect to the canonical basis) such that

$$\lim_{n \to \infty} \Gamma_n(A) = \operatorname{Sp}(A) \quad \forall A \in \Omega_{\mathrm{U}}.$$

Is it possible to verify the output $\Gamma_n(A)$ for any given finite n?

 $\mathbf{2}$

- (a) Give the definition of a projection-valued spectral measure on a separable Hilbert space. State the spectral theorem in terms of projection-valued spectral measures for normal operators A acting on a separable Hilbert space \mathcal{H} . Define the scalar-valued spectral measures $\mu_{v,w}$ and μ_v for $v, w \in \mathcal{H}$. Prove that if A is self-adjoint, then μ_v is a positive measure on \mathbb{R} with total mass ||v||.
- (b) Now suppose that A is a bounded self-adjoint operator, \mathcal{H}_n are finite-dimensional subspaces of \mathcal{H} and A_n are self-adjoint operators on \mathcal{H}_n . Suppose that the orthogonal projections \mathcal{P}_n onto \mathcal{H}_n are such that

$$\lim_{n \to \infty} \mathcal{P}_n^* \mathcal{P}_n v = v \quad \forall v \in \mathcal{H}.$$

What does it mean for the (scalar-valued) spectral measures of A_n to converge weakly to A? Prove that if

$$\lim_{n \to \infty} \langle A_n^m \mathcal{P}_n v, w \rangle = \langle A^m v, w \rangle \quad \forall v, w \in \mathcal{H}, m \in \mathbb{N},$$
(1)

then the spectral measures of A_n converge weakly to A. Does the conclusion still hold if we only require Eq. (1) to hold for m = 1?

(c) Now suppose that A is a unitary operator, \mathcal{H}_n are finite-dimensional subspaces of \mathcal{H} and A_n are unitary operators on \mathcal{H}_n . Suppose that the orthogonal projections \mathcal{P}_n onto \mathcal{H}_n are such that

$$\lim_{n \to \infty} \mathcal{P}_n^* \mathcal{P}_n v = v \quad \forall v \in \mathcal{H}.$$

What does it mean for A_n to converge to A in the functional calculus sense? Prove that if

$$\lim_{n \to \infty} \langle A_n \mathcal{P}_n v, w \rangle = \langle A v, w \rangle \quad \forall v, w \in \mathcal{H},$$

then A_n converges to A in the functional calculus sense.

(d) Let Ω_U denote the class of unitary operators acting on $l^2(\mathbb{N})$. Given a matrix representation of any $A \in \Omega_U$, show how the assumptions in (c) can be realised as an algorithm through a certain polar decomposition of a finite matrix. You may state standard properties of the singular value decomposition of a finite matrix and assume that it can be computed.

3 Throughout this question $(\mathcal{X}, d_{\mathcal{X}})$ is a metric space and ω is a Borel probability measure on \mathcal{X} .

- (a) Let $F: \mathcal{X} \to \mathcal{X}$ be continuous. What does it mean for
 - (i) F to be non-singular with respect to ω ?
 - (ii) F to be measure-preserving with respect to ω ?
 - (ii) F to be invertible with respect to ω ?

For case (i), define the Koopman operator K_F on $L^{\infty}(\mathcal{X}, \omega)$ and state a necessary and sufficient condition for it to extend to a bounded operator on $L^2(\mathcal{X}, \omega)$.

- (b) If $(X, \omega; F)$ is an invertible measure-preserving system, we say that the system is *ergodic* if every invariant set has measure 0 or 1.
 - (i) Show that an invertible measure-preserving system is ergodic if and only if whenever $K_F g = g$ for $g \in L^2(\mathcal{X}, \omega)$, g is constant ω -almost everywhere.
 - (ii) For $a \in (0, 2\pi)$, consider the circle rotation

$$X = [-\pi, \pi]_{\text{per}}, \quad F(x) = x + a,$$

where ω is the normalised Lebesgue measure. Prove that the system is ergodic if and only if a/π is irrational.

- (c) Given a computational problem $\{\Xi, \Omega, \mathcal{M}, \Lambda\}$, define the computational problem $\{\Xi, \Omega, \mathcal{M}, \Lambda\}^{\Delta_1}$ with inexact information. Suppose that we fix the metric space $(\mathcal{X}, d_{\mathcal{X}})$ and measure ω . Let Ω be a class of continuous maps $F : \mathcal{X} \to \mathcal{X}$ that are non-singular with respect to ω . Without specifying Ξ and \mathcal{M} , provide a suitable Λ so that $\{\Xi, \Omega, \mathcal{M}, \Lambda\}^{\Delta_1}$ corresponds to a "perfect measurement device" and explain this terminology.
- (d) Again let $X = [-\pi, \pi]_{per}$, ω the normalised Lebesgue measure and

 $\Omega = \{F : \mathcal{X} \to \mathcal{X} \text{ such that } F \text{ is continuous, measure-preserving and invertible} \}.$

Consider the problem function

$$\Xi_{\text{erg}}: \Omega \to \{0,1\} \text{ (with the discrete topology) }; F \mapsto \begin{cases} 1, & \text{if } F \text{ is ergodic,} \\ 0, & \text{otherwise.} \end{cases}$$

With your choice of Λ in (c) prove that $\{\Xi_{\text{erg}}, \Omega, \{0, 1\}, \Lambda\}^{\Delta_1} \notin \Delta_2^G$. (Recall that $\notin \Delta_2^G$ means the SCI of the problem is at least two.)

END OF PAPER

Part III, Paper 358