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In coordinates adapted to the 341 split of the Einstein equations, the line element is given
by
d52 = (_a2 + B’Lﬁz)dt2 + 251(115 dCL‘Z + ’y”dxz d:Ej ,

where o, 3, 7i; denote the lapse function, shift vector and spatial metric, respectively,
Latin indices run from 1 to 3 and repeated indices are summed over. The timelike unit
normal and extrinsic curvature are defined by

1 7
nt = <Oé7 _i> y Kaﬁ = _J—'uav,unﬁa

with the projector 1#, = §*, + n*n,. The three-dimensional covariant derivative of a
tensor T . is defined in terms of its spacetime covariant derivative by

D,T% 5 =1, 1%175...V,T7 " .
Let Z* be a vector field with time and spatial projections
©=-n2z", ©,=1°,2,.
(a) Show that
i) Z,=06,+n,09,
(ii) -V, = K, +nyua,, where a, =n"Vyn,,
(iii) VtZ, =-ntn"vV,Z,+D'Z,,

(ivy D'Z,=D'e,— KO, where K=K",.

(b) Now consider the generalized Einstein equations
Ry +VuZy + Ny Zy — [y Zy + nuZy — gune2°] = 8 (T — 39,0 T)
Using the scalar Gauss equation,
RM, + 2R, nfn” = R+ K? — K, K",
show that
R+ K* — K, K" — 2n/'V,,© — 2Z,a" — 46 + 2D"Z,, = 167p.

Here p = T),,n"n" and R denotes the Ricci scalar associated with the spatial metric v;;.

By expanding n#V 0, show that the © obeys the time evolution equation
50 = B"9,0 + % [R+ K(K +di0) — K, K" + dy©,a” — 40 + d3D"0,, + dap) ,

where dy, do, d3, d4 are constants you should determine.
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In natural units, where G = ¢ = 1, the Schwarzschild metric is given by
2M oM\ !
(b2:-—<1_5:)dja*‘<1_}z) dR? 4+ R?2d0? with dQ? = d6? +sin®0d¢?.

(a) Compute the Schwarzschild metric in the coordinates (¢, R, 0, ¢) where the new time ¢

is defined by
RM
dT = dt — dR.
(R— M)(R—2M)
(b) Introducing also a new radial coordinate r = R — M, show that the Schwarzschild
metric can be written as

r—M

ds? = —
y r+ M

2M M\?
&M—T&M+W@%w%m)mmewz<”;>. (1)

(c) By comparing the metric () with the 34+1 metric
ds? = (—a? + B;8")dt* + 2B;dt da’ + v;;da’ da?

where Latin indices run over (r,0,¢) and repeated indices are summed over, determine
the lapse function a (assuming « > 0), the shift vector components 3¢ (note the upstairs
index) and the spatial metric ;.

(d) Use the evolution equation
Ovij = B"OmYij + 1mi0i B + Ym;i0iB™ — 2aKi;

to compute the non-vanishing components of the extrinsic curvature Kj;;. Show that the

trace K = ~% K;; of the extrinsic curvature is K = %

(e) Consider the Bona-Massé family of slicing conditions,
(0 — B'0;)a = —a’fla)K ,

and determine the function f(«) such that this slicing condition is satisfied by the
Schwarzschild metric in the form (). Deduce that f(«) vanishes in the limit o — 1.
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(a) Consider the Minkowski metric in Cartesian coordinates,
ds® = detdes” = —dt* + da® + dy? + dz2.

Compute this line element in characteristic coordinates defined by u = t—z, v = t+2z with x
and y unchanged. Graphically sketch the coordinate basis vectors 9y, 0., 0y, 0, in the plane
x = const, y = const with the ¢ direction pointing upwards and the z direction pointing
horizontally. Express the wave operator J = 79,0, in the characteristic coordinates
(u,v,z,y).

(b) In linearized theory, the metric is given by gos = 1as + hag Where hqg < 1. A plane
wave solution to the linearized Einstein equations [1h,, in transverse traceless gauge with
background coordinates (¢, x,y, z) is given by

0 O 0 0
h,u/ = preippwp with HHV = 8 fli_ _}21 8 y Po = w(_17 0, 0, 1) ’
0 O 0 0

where H, H, and w are real constants. Starting from its definition ¥4 = R, ,ckH'm”k’m?,
compute the Newman-Penrose scalar W, at linear order for this plane wave. Here, the
linearized Riemann tensor is given by

1
Ryvpo = 5(8p8th + 0;0,hwp — 0,0,he — 050,hy),)

and the tetrad vectors are defined in terms of the coordinate basis vectors by

dh—0.), m=L(0,-id,).

_ 1

k= ﬁ(
(c) Express the plane wave solution of part (b) in terms of the characteristic coordinates
(u,v,z,y) and explicitly show that this solution satisfies the linearized Einstein equations
Oh,,, = 0 with the wave operator in characteristic coordinates as determined in part (a).

(d) Consider the spacetime metric
ds? = —dudv + f(u)?dz? + g(u)?dy>.

Denoting f' = df/du and ¢’ = dg/du, the only non-vanishing Christoffel symbols for this
metric are
SRR R R TR s
zu f ’ yu q ) Tx ) Yy ’

and those related to these by symmetry. In the following you may assume without proof
that Ry, = R%uau, is the only component of the Ricci tensor that does not trivially vanish.
Determine the vacuum Einstein equation Ry, = 0 for this spacetime by computing all
necessary components of the Riemann tensor

Consider the plane wave of part (c¢) with Hx = 0. Determine how Hy of this plane wave
is related to f(u) and g(u) and show that the plane wave is a solution to the Einstein
equations at linear order in H . Part ITI, Paper 357
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