MAMA/356, NST3AS/356, MAAS/356

MAT3 MATHEMATICAL TRIPOS Part III

Friday 7 June 2024 $\ 1:30~\mathrm{pm}$ to $3:30~\mathrm{pm}$

PAPER 356

STOCHASTIC PROCESSES IN BIOLOGY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt **BOTH** questions. There are **TWO** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Consider four chemical species X_1 , X_2 , X_3 and X_4 in a reactor of volume V which are subject to the following seven chemical reactions:

$$2X_1 \xrightarrow{\alpha_1} \varnothing, \qquad X_1 \xrightarrow{\alpha_2} X_1 + X_2, \qquad 2X_2 \xrightarrow{\alpha_3} X_2, \qquad \varnothing \xrightarrow{\alpha_4} X_3,$$
$$X_3 + X_4 \xrightarrow{\alpha_5} \varnothing, \qquad X_2 \xrightarrow{\alpha_6} X_2 + X_4, \qquad X_2 + X_4 \xrightarrow{\alpha_7} X_4,$$

where $\alpha_1, \alpha_2, \ldots, \alpha_7$ are non-negative dimensionless rate coefficients.

Assume that there is initially 5 molecules of X_1 and no molecules of X_2 , X_3 and X_4 in the reactor, i.e. $X_1(0) = 5$ and $X_2(0) = X_3(0) = X_4(0) = 0$. Let $p(x_1, x_2, x_3, x_4, t)$ be the probability that $X_1(t) = x_1$, $X_2(t) = x_2$, $X_3(t) = x_3$ and $X_4(t) = x_4$, where x_1 , x_2 , x_3 and x_4 are non-negative integers.

- a) State the Gillespie stochastic simulation algorithm for this chemical system.
- b) The chemical master equation for $p(x_1, x_2, x_3, x_4, t)$ can be written in the form

$$\frac{\partial}{\partial t}p(x_1, x_2, x_3, x_4, t) = \mathcal{L}^* p(x_1, x_2, x_3, x_4, t).$$

State the forward operator \mathcal{L}^* and the backward (adjoint) operator \mathcal{L} .

In the remainder of this question, assume that V = 1.

- c) Assume that $\alpha_1 = 1$ and let g(t) be the probability that there is one molecule of X_1 in the reactor at time t. Find g(t) as a function of time.
- d) Let the mean of a suitable function f be denoted by

$$\langle f(x_1(t), x_2(t), x_3(t), x_4(t)) \rangle = \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \sum_{x_3=0}^{\infty} \sum_{x_4=0}^{\infty} f(x_1, x_2, x_3, x_4) p(x_1, x_2, x_3, x_4, t),$$

and its stationary mean by $\langle f(x_1^*, x_2^*, x_3^*, x_4^*) \rangle = \lim_{t \to \infty} \langle f(x_1(t), x_2(t), x_3(t), x_4(t)) \rangle$.

(i) Assume that $\alpha_7 = 0$. Derive differential equations for $\langle x_2(t) \rangle$ and $\langle x_2^2(t) \rangle$. Briefly explain why solving for the stationary mean $\langle x_2^* \rangle$ requires solving an infinite system of equations.

By neglecting the equations for $\langle x_2^n(t) \rangle$ with $n \ge 3$, and assuming that

$$\langle (x_2^* - \langle x_2^* \rangle)^n \rangle = 0 \text{ for all } n \ge 3,$$

show that $\langle x_2^* \rangle$ is a root of a cubic polynomial, which you should specify in terms of the rate coefficients. You do not have to solve for $\langle x_2^* \rangle$.

- (ii) Disregard the assumptions from part (i) and assume instead that $\alpha_7 > 0$. Assume also that there exists a unique stationary mean $\langle x_i^* \rangle$ for all i = 1, 2, 3, 4. Compute $\langle x_2^* \rangle$ in terms of the rate coefficients.
- e) Consider now arbitrary positive coefficients $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7 > 0$. Assume that

$$\frac{\alpha_3\alpha_4}{\alpha_2\alpha_6} > 1.$$

Show that the mean copy number of some species tends to infinity in the long run, i.e., that $\lim_{t\to\infty} \langle x_i(t) \rangle = \infty$ for some *i*. Identify the species index *i*.

Part III, Paper 356

2 Consider a particle described by its position (X(t), Y(t)) in the square domain

$$\Omega = \left\{ (x, y) \in \mathbb{R}^2 : -1 \leqslant x \leqslant 1, -1 \leqslant y \leqslant 1 \right\},\$$

evolving according to the diffusion process

$$dX(t) = a_1 dt + \sqrt{2} dW_1(t),$$

$$dY(t) = a_2(X, Y) dt + \sigma(Y) dW_2(t),$$

where W_1, W_2 are independent one-dimensional Brownian motions, a_1 is a constant and $a_2(x, y)$ and $\sigma(y)$ are functions. The particle has initial condition (X(0), Y(0)) = (0, 0) and reflecting boundary conditions on $\partial\Omega$.

- a) State the Fokker–Planck equation for the probability density p(x, y, t) in Ω , together with the initial and boundary conditions.
- b) Let (X_n, Y_n) be the Milstein scheme approximation to $(X(t_n), Y(t_n))$, where $t_n = n\Delta t$ for $\Delta t > 0$ and n = 0, 1, ..., N. Write the scheme (including boundary conditions) and comment on its weak and strong order of convergence.

For the rest of the question, we replace the boundary condition on $x = \pm 1$ with a partially reflecting/adsorbing boundary condition

$$J \cdot n = \kappa p$$
, on $x = \pm 1$,

where J is the probability flux associated to the Fokker–Planck equation in (a), n is the outward normal to $\partial\Omega$ and $\kappa > 0$ is the reactivity. The reflecting boundary conditions on $y = \pm 1$ remain unchanged.

- c) For $a_1 = \kappa = 1$, calculate the mean time τ for the particle to be adsorbed on $\partial \Omega$. [*Hint: you must consider how the boundary conditions on p transform for* τ .]
- d) Now set $\kappa = \infty$ (fully adsorbing boundary). What is the probability $g(a_1)$ that the particle is absorbed on the left boundary, i.e., with final value X(T) = -1? Comment on the behaviour of $g(a_1)$ for large positive and negative values of a_1 .

END OF PAPER