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1 Consider four chemical species X1, X2, X3 and X4 in a reactor of volume V which
are subject to the following seven chemical reactions:

2X1
α1−→ ∅, X1

α2−→ X1 +X2, 2X2
α3−→ X2, ∅ α4−→ X3,

X3 +X4
α5−→ ∅, X2

α6−→ X2 +X4, X2 +X4
α7−→ X4,

where α1, α2, . . . , α7 are non-negative dimensionless rate coefficients.

Assume that there is initially 5 molecules of X1 and no molecules of X2, X3 and X4

in the reactor, i.e. X1(0) = 5 and X2(0) = X3(0) = X4(0) = 0. Let p(x1, x2, x3, x4, t) be
the probability that X1(t) = x1, X2(t) = x2, X3(t) = x3 and X4(t) = x4, where x1, x2, x3
and x4 are non-negative integers.

a) State the Gillespie stochastic simulation algorithm for this chemical system.

b) The chemical master equation for p(x1, x2, x3, x4, t) can be written in the form

∂

∂t
p(x1, x2, x3, x4, t) = L∗p(x1, x2, x3, x4, t).

State the forward operator L∗ and the backward (adjoint) operator L.

In the remainder of this question, assume that V = 1.

c) Assume that α1 = 1 and let g(t) be the probability that there is one molecule of X1

in the reactor at time t. Find g(t) as a function of time.

d) Let the mean of a suitable function f be denoted by

⟨f(x1(t), x2(t), x3(t), x4(t))⟩ =
∞∑

x1=0

∞∑

x2=0

∞∑

x3=0

∞∑

x4=0

f(x1, x2, x3, x4)p(x1, x2, x3, x4, t),

and its stationary mean by ⟨f(x∗1, x∗2, x∗3, x∗4)⟩ = limt→∞⟨f(x1(t), x2(t), x3(t), x4(t))⟩.

(i) Assume that α7 = 0. Derive differential equations for ⟨x2(t)⟩ and ⟨x22(t)⟩. Briefly
explain why solving for the stationary mean ⟨x∗2⟩ requires solving an infinite
system of equations.

By neglecting the equations for ⟨xn2 (t)⟩ with n ⩾ 3, and assuming that

⟨(x∗2 − ⟨x∗2⟩)n⟩ = 0 for all n ⩾ 3,

show that ⟨x∗2⟩ is a root of a cubic polynomial, which you should specify in terms
of the rate coefficients. You do not have to solve for ⟨x∗2⟩.

(ii) Disregard the assumptions from part (i) and assume instead that α7 > 0.
Assume also that there exists a unique stationary mean ⟨x∗i ⟩ for all i = 1, 2, 3, 4.
Compute ⟨x∗2⟩ in terms of the rate coefficients.

e) Consider now arbitrary positive coefficients α1, α2, α3, α4, α5, α6, α7 > 0. Assume that

α3α4

α2α6
> 1.

Show that the mean copy number of some species tends to infinity in the long run,
i.e., that limt→∞⟨xi(t)⟩ = ∞ for some i. Identify the species index i.
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2 Consider a particle described by its position (X(t), Y (t)) in the square domain

Ω =
{
(x, y) ∈ R2 : −1 ⩽ x ⩽ 1,−1 ⩽ y ⩽ 1

}
,

evolving according to the diffusion process

dX(t) = a1dt+
√
2dW1(t),

dY (t) = a2(X,Y )dt+ σ(Y )dW2(t),

where W1,W2 are independent one-dimensional Brownian motions, a1 is a constant and
a2(x, y) and σ(y) are functions. The particle has initial condition (X(0), Y (0)) = (0, 0)
and reflecting boundary conditions on ∂Ω.

a) State the Fokker–Planck equation for the probability density p(x, y, t) in Ω, together
with the initial and boundary conditions.

b) Let (Xn, Yn) be the Milstein scheme approximation to (X(tn), Y (tn)), where tn = n∆t
for ∆t > 0 and n = 0, 1, . . . , N . Write the scheme (including boundary conditions)
and comment on its weak and strong order of convergence.

For the rest of the question, we replace the boundary condition on x = ±1 with a partially
reflecting/adsorbing boundary condition

J · n = κp, on x = ±1,

where J is the probability flux associated to the Fokker–Planck equation in (a), n is the
outward normal to ∂Ω and κ > 0 is the reactivity. The reflecting boundary conditions on
y = ±1 remain unchanged.

c) For a1 = κ = 1, calculate the mean time τ for the particle to be adsorbed on ∂Ω.
[Hint: you must consider how the boundary conditions on p transform for τ .]

d) Now set κ = ∞ (fully adsorbing boundary). What is the probability g(a1) that the
particle is absorbed on the left boundary, i.e., with final value X(T ) = −1? Comment
on the behaviour of g(a1) for large positive and negative values of a1.
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