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1 An elastic membrane with bending modulus kc and tension σ initially lies flat in
the x − y plane. An infinite cylinder of radius R is then brought into contact with the
membrane, deforming it into the shape shown in cross section in the figure.

R

δo-δo

Assume the limit of small membrane deformations h(x), where, relative to the flat
configuration, the membrane energy Em per unit length along the cylinder is

Em =
1

2

∫ (
kch

2
xx + σh2x

)
dx,

and that the membrane adheres to the cylinder in the region −δo ⩽ x ⩽ δo, where the
centre of the cylinder is at x = 0, with δo ≪ R and also δo ≪ ξ, where ξ =

√
kc/σ. The

adhesion energy Ea of the membrane to the cylinder is −U per unit area.

(a) Find the Euler-Lagrange equation that governs the membrane shape in regions
|x| ⩾ δo, and find its general solution. Show that the elastic energy in the deformed
membrane outside the contact region can be expressed entirely in terms of the function
h and its derivatives at the contact points x = ±δo. By enforcing suitable matching
conditions at the contact points, find the shape of the free parts of the membrane and
thus their elastic energy. By minimising the total energy E = Em + Ea with respect to
δo, show that the minimum energy configuration has

δo = ξ

(
U − 1

2

)
,

where U = R2U/kc, and thus binding is only favorable for sufficiently large U . Show that
when the membrane is bound to the cylinder the configuration has energy

E = −kcξ

R2

(
U − 1

2

)2

.

(b) Now consider two such cylinders whose centres are at x = ±L and which adhere to
the same side of the membrane, with L > R. Repeating the analysis in (a), but allowing
for distinct outer and inner contact lengths δo and δi for the membrane outside the two
cylinders and in the region in between, show that there is a repulsive interaction between
the cylinders with energy

V (L) =
kcξ

R2

(
U − 1

2

)2 [
1− tanh

(
L

ξ

)]
.
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2 Certain cells in the retina can be modelled as cylindrical membranes of bending
modulus kc that enclose a spherical nucleus of radius R as in the figure.

The membrane energy is the sum of bending elasticity and an area term with a tension σ,

Em =

∫
dS

(
σ +

1

2
kc(2H)2

)
.

where H is the mean curvature.

(a) Show that the equilibrium radius r0 of the cylinder far from the sphere is r0 =
√
kc/2σ.

(b) Entropic repulsion from membrane fluctuations increases the average radius of the
membrane to R̄ > R. Using Helfrich’s form for the free energy F (d) = (kBT )

2/64kcd
2 per

unit area for a membrane a distance d from a wall, write down an approximate expression
for the total free energy of this system as a function of δ = R̄ − R, in the high-tension
regime where r0 ≪ R and δ/R ≪ 1. Minimizing with respect to δ, show that

δ =

(
(kBT )

2R

64kcσ

)1/3

.

(c) The sphere now moves along the tube at speed U . In the frame of the sphere, the
fluid in the thin gap can be described by lubrication theory with a separable azimuthal
velocity uθ = ϕ(z)/ sin θ, where z ∈ [0, δ] is a radial coordinate within the gap. Show that
the Stokes equation coupling the pressure p to ϕ becomes

sin θ
∂p

∂θ
= µR

∂2ϕ

∂z2
= a,

for some constant a, and therefore

p(θ) =
1

2
a ln

(
1− cos θ

1 + cos θ

)
.

In the frame moving with the sphere, find ϕ(z) by enforcing fluid conservation in the limit
r0/R ≪ 1 and the boundary conditions at z = 0 and z = δ. Show by a scaling argument
that the pressure contribution to the force on the sphere dominates the viscous one, and
compute the total force on the sphere as

2πR2

∫ π−∆θ

∆θ
dθ sin θ cos θ p(θ).

In the limit ∆θ ≪ 1, show that the drag coefficient on the sphere is enhanced from its
value 6πµR in the absence of the membrane by the factor 2R2/δ2. How does the diffusion
constant of the sphere change?
[
Hint :

∫ c
−c x ln

(
1+x
1−x

)
dx = 2c+ (1− c2) ln

(
1−c
1+c

)
.
]

Part III, Paper 355 [TURN OVER]



4

3 A spherical cell swims a distance h from a flat free surface and is tilted at an angle
θ from it, where θ = 0 means the cell is swimming parallel to the surface. The flow created
by a cell away from the surface is that of an axisymmetric force dipole of magnitude P
and direction p,

u(r) =
P
8πµ

(
3 (p · r)2

r5
− 1

r3

)
r.

(a) Show that all boundary conditions on the free surface (no shear and no penetration)
are satisfied by the superposition of the original dipole and a mirror-image dipole located
on the other side of the surface at a distance h away. Deduce the value of the perturbation
flow induced by the free surface on the cell and hence the surface-induced motion of the
cell. Explain the different behaviour in the cases of pullers and pushers.

(b) The orientation of the cell in an external flow whose vorticity is ω may be described
using the general equation

ṗ = Ωf × p, Ωf =
1

2
ω.

Find the equation of motion of the orientation angle θ. Using this result, explain the
different behaviours expected for pullers and pushers near a free surface.
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