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1 (a) Consider a spherically symmetric gas cloud with a constant density ρ0, and a
radius r. If the condition for gravitational collapse is satisfied, calculate the Jeans mass of
this cloud MJ, as a function of ρ0 and cloud temperature T , where you may assume that
the adiabatic index is γ = 5/3.

(b) Using the results from (a), determine howMJ scales with gas density in the case
of both adiabatic and isothermal collapse and hence, explain how these findings help us
interpret the formation and initial mass function of PopIII and PopII stars.

Futhermore, what can we infer about the black hole seed formation mechanisms
from these considerations?

(c) Consider now an initially axisymmetric, infinitesimally thin disc with constant
surface density Σ0, constant gas pressure p0, and angular velocity Ω(R), subject to
its own self-gravity with gravitational potential Φ0. Assume that small axisymmetric
perturbations in the disc lead to the following changes in the disc properties:

Σ = Σ0 +Σ′ , p = p0 + p′ , uR = u′R , uϕ = RΩ+ u′ϕ , Φ = Φ0 +Φ′ ,

where perturbed quantities are indicated with a superscript
′
, uR is the radial velocity, uϕ is

the azimuthal velocity and R is the cylindrical radius. Write down the mass conservation,
momentum and Poisson equations both for the unperturbed and perturbed disc.

Assuming that the perturbations vary as ∝ ei(kR−ωt) analyse these equations in the
Fourier space, where you may retain only first order perturbation terms, to obtain the
following dispersion relation:

ω2 = κ2 − 2πG|k|Σ0 + k2c2s . (1)

Here k is the radial wavenumber, ω is the angular frequency, κ2 ≡ 4Ω2 + 2RΩ dΩ
dR is the

epicyclic frequency, and cs =
( dp
dΣ

)1/2
is the gas sound speed. To derive this dispersion

relation you may assume that

Φ
′
= −2πGΣ

′

|k| , (2)

and consider only perturbations with short radial wavelength such that kR≫ 1.

Assuming now a Keplerian potential calculate the epicyclic frequency κ, and write
down a condition for ω for the gravitational instability to develop. By analyzing the roots
of the dispersion relation for k, show that the following condition must be satisfied:

Q =
csΩ

πGΣ
< 1 , (3)

where Q is the Toomre parameter.

By re-writing equation (1) in the following form:

ω2

Ω2
= 1− 2h|k|

Q
+ h2k2 , (4)

where h = cs/Ω, interpret the physical meaning of each term on the right-hand side of
this equation to show what may stabilize the gravitational instability on small and large
spatial scales, respectively.

[Hint: Recall that the relevant R- and ϕ-components of the convective derivative in

the momentum equation are: uR
∂uR
∂R − u2

ϕ

R and uR
∂uϕ

∂R +
uRuϕ

R , respectively.]
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2 (a) Consider a steady, geometrically thin and optically thick accretion disc around
a black hole with mass M . The radial and azimuthal components of the Navier-Stokes
equation read:

uR
∂uR
∂R

−
u2ϕ
R

+
1

ρ

∂p

∂R
+
GM

R2
= 0 , (1)

Σ

(
uR

∂uϕ
∂R

+
uRuϕ
R

)
=

1

R2

∂

∂R

(
νΣR3 dΩ

dR

)
, (2)

where R is the cylindrical radius, uR is the radial velocity, uϕ is the azimuthal velocity, ρ
is the density of the disc, p is the pressure of the disc, G is the gravitational constant, Σ
is the surface density of the disc, ν is the kinematic viscosity and Ω is the angular velocity
of the disc. Using the azimuthal component of the Navier-Stokes equation together with
the mass conservation equation derive how Σ and uR depend on the mass accretion rate,
ṁ, ν and R.

(b) Explain in detail what is meant by the Shakura and Sunyaev α prescription and
using physical arguments explain the relation of the α parameter to ν, disc scale-height
H, and sound speed cs.

(c) Using leading order analysis of the thin disc equations demonstrate that uR is
highly sub-sonic and uϕ is highly super-sonic and physically interpret this finding.

(d) Assume now that the gas pressure is the dominant source of pressure in the disc,
the radiative efficiency is 0.1, and that the kinematic viscosity ν scales as follows:

ν ∝ R3/4f
3/10
Edd

(
α

0.1

)4/5( M

106M⊙

)1/20

, (3)

where fEdd is the Eddington ratio and M⊙ is the Solar mass. Using the results from (a),
or otherwise, calculate the disc mass, Md(R), within R, in the limit where R ≫ RISCO,
where RISCO is the radius of the innermost stable circular orbit to show that

Md(R) = C1 f
k1
Edd

(
α

0.1

)k2( M

106M⊙

)k3( R

RS

)k4

, (4)

where k1, k2, k3 and k4 are exponents to be determined and RS = 2GM/c2 is the
Schwarzschild radius, with c being the speed of light. You may assume that C1 ≈ 10−2M⊙
without a need to calculate it.

(e) Recalling that the Toomre parameter, Q(R), for this accretion disc may be
written as:

Q(R) =
Ωcs
πGΣ

, (5)

determine how Q(R) scales with R and show that there is a unique radius, Rsg, the
self-gravitating radius, where Q(Rsg) = 1.

Hence, derive:

Rsg

RS
= C2 f

k5
Edd

(
α

0.1

)k6( M

106M⊙

)k7

, (6)

where k5, k6, k7 are exponents to be determined. You may assume that C2 ≈ 105 without
a need to calculate it.

[QUESTION CONTINUES ON THE NEXT PAGE]
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By comparing Rsg to RISCO, and assuming α ∼ 0.1 and fEdd ∼ 1, show that there is
a critical black hole mass for which a thin disc cannot exist. What is the physical meaning
of this result? By comparing the likely Eddington luminosity of this critical black hole
mass with the observed quasar luminosities what do you deduce? Can there be black holes
more massive than this critical mass in the Universe?
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3 (a) Explain what radiatively inefficient black hole accretion means and comment
how this may occur both at high and low Eddington ratios.

Furthermore, by considering that the net energy advection rate, qadv, is given by the
balance of the volume heating and cooling rates, q+ and q−, respectively, explain which
three types of solutions are possible and to which types of accretion flows they correspond.

(b) Consider the radial component of the momentum equation in the following form:

(v⃗p · ∇)v⃗p = −1

ρ
∇p−∇Φ+ Ω2R⃗ , (1)

where v⃗p is the poloidal velocity vector, ρ is the gas density, p is the gas pressure, Φ is the

gravitational potential, Ω is the angular velocity and R⃗ is the cylindrical radius vector.
Write down the surviving terms of this equation for steady flows that correspond to: i)
thin Keplerian discs, ii) stellar atmospheres, iii) gravitational collapse, iv) slim discs, v)
thick discs, vi) Bondi-Hoyle accretion and vii) sub-Keplerian ADAFs.

(c) Recall that the viscous dissipation for a steady, standard thin accretion disc can
be written as:

Fdiss(R) =
3GMṁ

4πR3

[
1−

(
RISCO

R

)1/2]
, (2)

where G is the gravitational constant, M is the mass of the black hole, ṁ is the mass
flux through the disc, R is the cylindrical radius and RISCO is the radius of the innermost
stable circular orbit. Hence, calculate the total luminosity of the disc between RISCO and
R2 → ∞ and compare it with the accretion luminosity, Lacc. What do you deduce from
this comparison?

(d) Consider now a slim accretion disc in a steady state. If the vertically-averaged
azimuthal component of the Navier-Stokes equation can be written as:

ΣRuR
d(R2Ω)

dR
=

d

dR

(
νΣR3 dΩ

dR

)
, (3)

where R is the cylindrical radius, uR is the radial velocity, Σ is the surface density of the
disc, ν is the kinematic viscosity and Ω is the angular velocity of the disc, show that:

G2 − G1 = −ṁ(l2 − l1) . (4)

Here, ṁ is the mass flux through the disc, and G(R) and l(R) are the torque and the
specific angular momentum, evaluated at two radii in the disc, R1 and R2.

As viscous dissipation can be expressed as:

Fdiss =
1

2πR
G(R)dΩ

dR
, (5)

derive that the total rate of energy generation by viscosity, Lgen, between Rin ∼ RISCO

and Rout can be written as:

Lgen(Rin, Rout) ≃ ṁ[eout − ein − Ωout(lout − lin)] . (6)

Here, e is the gas specific energy and at the surface of the accretion disc you may assume
that the difference in the rotational potentials, ψrot,2 −ψrot,1, between radii R2 and R1, is

equal to the difference in the gravitational potentials, Φ2 − Φ1, with ∇ψrot = Ω2(R)R⃗.

[QUESTION CONTINUES ON THE NEXT PAGE]
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In the limit Rin ≪ Rout find a simple expression to relate Lgen to the total luminosity
of the standard thin accretion disc as calculated in (c), which is a function of the angular
velocity at Rin, and comment on the physical meaning of this expression.

END OF PAPER
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