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1 Consider a bi-disperse particle suspension of spherical particles of densities ρ1, ρ2
and volume concentrations ϕ1, ϕ2, respectively. The corresponding Stokes settling velo-
cities of individual particles are Ŵ1, Ŵ2 < 0 and z is vertically upwards.

(a) Suppose the suspension is horizontally homogeneous such that ϕi = ϕi(z, t) (for
i = 1, 2), the fluid is quiescent other than the motion due to the settling of the
particles, and changes to the bulk viscosity due to the presence of the particles
can be neglected. Show that for a ‘hindered settling’ regime, the particle settling
velocities are given by

W1 = (1− ϕ1)Ŵ1 − ϕ2Ŵ2 ,

W2 = (1− ϕ2)Ŵ2 − ϕ1Ŵ1 ,

if the upward motion of the fluid displaced by the settling particles is felt equally
by all the particles.

(b) Consider the particles settling in a horizontally homogeneous quiescent fluid.

(i) Give expressions for the one-dimensional time-dependent conservation rela-
tions for the volume concentrations ϕ1, ϕ2. Determine the characteristics λj

(j = 1, 2...) of this system of equations.

(ii) Consider the case Ŵ1 = (1− ϵ)Ŵ and Ŵ2 = (1 + ϵ)Ŵ for ϵ ≪ 1. Determine
the characteristics λj to O(ϵ). Explain the meaning of the leading-order
term for each characteristic and give the corresponding leading-order ordinary
differential equation for the evolution of the particle concentration along it.

(c) Consider a deep ambient fluid in a horizontal channel of unit width and rectangular
cross section. A high-Reynolds-number Boussinesq shallow water flow is created by
the instantaneous release of a bi-disperse suspension at one end of the channel in
a region of length L0 and depth h0. The suspension has uniform initial particle
volume concentrations ϕ1(t = 0) = ϕ̃1 and ϕ2(t = 0) = ϕ̃2, with ϕ̃1, ϕ̃2 ≪ 1, and
the fluid containing the particles is the same as that elsewhere in the channel. You
may assume the interior of the current remains well mixed and of constant volume,
and that any particles settling onto the base of the channel remain on the base.

(i) State a suitable condition for the front of the current that develops and derive
an integral (box) model for the long-time evolution of the length L(t) and
depth h(t) of the current.

(ii) In the case Ŵ1 = Ŵ2 = Ŵ , show that

L∞ =

[
L
5/2
0 + C

(L0h0)
3/2g̃′1/2

|Ŵ |

]2/5

,

giving a suitable form for the initial total reduced gravity g̃′ and determining
the constant C.

(iii) How will the run-out length change if Ŵ1 = (1− ϵ)Ŵ and Ŵ2 = (1+ ϵ)Ŵ for
0 < ϵ ≪ 1 when ϕ̃1ρ1 < ϕ̃2ρ2? [You should justify your answer but a detailed
calculation is not required.]
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2 Consider an incompressible Boussinesq stably stratified fluid of density ρ̂(z) (with
z directed vertically upwards) in which there is an internal gravity wave field of frequency
ω and wavevector k = (k, 0,m).

(a) Starting from the Navier–Stokes equations and mass conservation, derive the
equations governing the internal gravity waves and hence determine the dispersion
relationship for a plane wave with suitably small kinematic viscosity ν and mass
diffusivity κ. Show that the plane-wave solution satisfies the nonlinear equations.
Describe briefly how nonzero ν or κ affects the structure of the wave field (you need
not give a full derivation but you should explain the structure).

(b) Consider the wave field reflected from a boundary centred on z = 0. The
boundary has a symmetric sawtooth profile (see figure) characterised by amplitude
h0 and wavelength λT . The incoming wave field is linear with vertical velocity
wi(x, t) = w̃i sin(k · x− ωt).

λT

2h0 x

(i) For what range of frequency ω will the reflection be subcritical? Using ray
tracing, sketch this situation.

(ii) Sketch the behaviour if the reflection is not subcritical. Is this behaviour
likely to persist? [You should justify your answer.]

(c) Suppose the boundary used for part (b) is replaced by a sinusoidal one, also centred
on z = 0 but now with height profile h = h0 sin kTx, where kT = 2π/λT .

(i) For what range of ω will the reflection be subcritical? For a subcritical
reflection in the limit ν = κ = 0, determine to O(h20) the vertical velocity
wr(x, t) of the reflected wave field. State any requirements for the result to
be valid.

(ii) Sketch the behaviour if the reflection is not subcritical. [You need not compute
the reflected wave field.]
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3 Consider a well insulated room of floor area A and height H. The room has a
single vent of height H ′ spanning the length L of one wall of the room. The floor is
located at z = 0 and the lower edge of the vent is located at z = zV . A point source of
buoyancy flux B > 0 is located on the floor in the centre of the room. Assume that a
two-layer stratification develops and reaches a steady state with an upper-layer density
ρH and lower-layer density ρL separated by an interface at height z = h above the floor.
Assume also that h < zV , there is no wind, the external density ρ1 (away from the vent)
is constant, ρ1 > ρL > ρH , and the flow is incompressible.

(a) Explain the Boussinesq approximation and Batchelor’s entrainment hypothesis.
Discuss their use in the context of this problem.

(b) Determine the exchange flow rate QV through the vent in terms of the densities
involved, stating any assumptions made.

(c) Assume the point source at the floor generates a pure Boussinesq axisymmetric
plume with top-hat profiles. State the necessary governing equations and determine
the plume’s radius r, top-hat velocity U , volume flux QB, and the reduced gravity
g′B as functions of z.

(d) Assume the cold air entering through the vent descends along the wall beneath the
vent as a pure Boussinesq line plume with top-hat profiles and negligible horizontal
momentum. Determine the height of the virtual origin z = zo for this plume if the
plume width is b = H ′/2 at z = zV . Determine (as functions of z) the velocity W
within the plume, the width b of the plume, and the reduced gravity g′.

(e) Establish the implicit relationship between the geometry of the room, the interface
height h and the buoyancy flux B from the point source. Determine the correspond-
ing exchange flow rate QV . [Hint: Consider a heat balance.]

(f) Find an implicit relationship for the steady interface height when a second vent of
same size and vertical position on the oppoosite wall is opened.
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