MAMA/342, NST3AS/342, MAAS/342, NST3PHY/TQM, MAPY/TQM

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday 4 June 2024 $\ 1:30~\mathrm{pm}$ to 3:30 pm

PAPER 342

TOPOLOGICAL QUANTUM MATTER

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 This question discusses the two-dimensional surface code, the charge-flux model of anyons, and Chern-Simons theory.

- (a) Define e and m particles in the surface code and show that they obey the fusion rules $e \times e = 1$, $m \times m = 1$, where **1** is the vacuum, or "identity", particle. Show that encircling an e with an m or vice versa yields phase $\exp(2i\theta_{em}) = \exp(2i\theta_{me}) = -1$. Show that exchanging two e particles yields $\exp(i\theta_{ee}) = 1$ and that the same holds for m particles, $\exp(i\theta_{mm}) = 1$.
- (b) Upon fusion, e and m yield the f particle: $e \times m = f$. Show that exchanging two f particles yields $\exp(i\theta_{ff}) = -1$. Compute the spin of the f particle and comment on whether it is consistent with the spin-statistics relation.
- (c) Define the charge-flux model of anyons and show that encircling a particle (q_1, Φ_1) by a particle (q_2, Φ_2) , where q_j and Φ_j are particle charges and fluxes, respectively, yields $\exp(2i\theta_{12})$ with $2\theta_{12} = (q_1\Phi_2 + q_2\Phi_1)/\hbar$. (You may invoke the Aharonov-Bohm and Aharonov-Casher effects without proof.)

Suppose that the charge-flux model has charge quantised in units of q_0 and flux quantised in units of Φ_0 . Furthermore, suppose that particles can be detected only via encircling them by other particles; hence we identify particle n with **1** if $\exp(2i\theta_{np}) = 1$ for all particles p.

Suppose that $a = (q_0, 0)$ and $b = (0, \Phi_0)$ satisfy $\exp(2i\theta_{ab}) = -1$. Show that $a \times a = \mathbf{1}, b \times b = \mathbf{1}$, and that $c = a \times b$ satisfies $\exp(i\theta_{cc}) = -1$. Hence interpret e and m of the surface code in terms of the charge-flux model.

(d) Certain topologically ordered systems can be characterised by a 2×2 matrix K and the assignment of 2-component vectors \mathbf{q} to particles. Both K and \mathbf{q} have integer entries. Fusing particles \mathbf{q} and \mathbf{q}' yields $\mathbf{q} + \mathbf{q}'$. Encircling particle \mathbf{q} by particle \mathbf{q}' yields $\exp(2i\theta_{qq'})$ with $\theta_{qq'} = \pi \mathbf{q}' \cdot K^{-1} \mathbf{q}$.

By computing braiding and fusion properties, show that the surface code can be described by $K = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$, with $\mathbf{q}_e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{q}_m = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for e and m particles, respectively. In inspecting fusion, similarly to part (c), you may assume that particles can be detected only through encircling them by other particles.

- (a) A stabilizer group S is a subgroup of the *n*-qubit Pauli group \mathcal{P}_n such that $-\mathbb{1} \notin S$; it defines a codespace $\mathcal{L} \subset \mathcal{H} = (\mathbb{C}^2)^{\otimes n}$ as $\mathcal{L} = \{|\psi\rangle \in \mathcal{H} \mid g|\psi\rangle = |\psi\rangle, \forall g \in S\}$. Show that if $S = \langle S_1, S_2, \ldots, S_m \rangle$, with generators S_1, S_2, \ldots, S_m , then $S_j^2 = \mathbb{1}$ and $S_j = S_j^{\dagger}, \forall j$. Further show that dim $\mathcal{L} > 0$ implies that S is Abelian. Define the centralizer $\mathcal{C}(S)$.
- (b) Consider a stabilizer code based on S. Describe error detection and define the syndrome **s**. Suppose that the code suffered an unknown error from \mathcal{P}_n , yielding **s**. Explain why the only information that **s** reveals about the error is that it belongs to $E_{\mathbf{s}} \mathcal{C}(S)$, where $E_{\mathbf{s}} \in \mathcal{P}_n$ is an error consistent with **s**.

The rest of the question is about the surface code on the square lattice, with qubits on the links. Suppose that the code furnishes a single logical qubit with logical Pauli operators $\overline{Z} = \prod_{j \in \gamma} Z_j$ and $\overline{X} = \prod_{j \in \overline{\gamma}} X_j$ for suitable noncontractible paths γ and $\overline{\gamma}$. Suppose furthermore that the code is subject to the bit-flip channel, i.e., it suffers errors X_j with probability p (with $0 \leq p < 1/2$) independently on each qubit j.

(c) Relate the probability that an error belongs to $E_{\mathbf{s}}\bar{X}^{q}\mathcal{S}$, with $q \in \{0,1\}$, to the partition function $\mathcal{Z}_{\mathbf{s},q}$ of the two-dimensional Ising model

$$H_{\mathbf{s},q} = -J \sum_{vv', \text{ n.n.}} \eta_{vv'}(\mathbf{s},q) \sigma_v \sigma_{v'},$$

where $e^{\beta J} = \sqrt{(1-p)/p}$ with β the inverse temperature, $\sigma_v \in \{1, -1\}$, and the sum is over nearest-neighbour (n.n.) v, v'. Define $\eta_{vv'}(\mathbf{s}, q)$ in terms of $E_{\mathbf{s}} \bar{X}^q$.

(d) The Ising Hamiltonian $H_{\mathbf{s},q}$ may need to be modified at boundaries. Consider the surface code on a finite cylinder. Suppose that γ in \overline{Z} connects the cylinder's two boundaries. Define boundary stabilizer generators that allow for such \overline{Z} and show that the system indeed furnishes a single logical qubit. Derive the modifications of $H_{\mathbf{s},q}$ accounting for the boundaries.

3 The mean field theory of superconductors involves the Bogoliubov-de Gennes (BdG) Hamiltonian H_{BdG} which, in position representation, has structure

$$H_{\rm BdG} = \left(\begin{array}{cc} h & \Delta \\ -\Delta^* & -h^* \end{array} \right)$$

with matrices h and Δ . In position representation, particle-hole (PH) symmetry is $\Sigma_1 H^*_{BdG} \Sigma_1 = -H_{BdG}$, where Σ_1 is the first Pauli matrix in the 2 × 2 grading of H_{BdG} .

- (a) Show that any quadratic fermion Hamiltonian $H = \sum_{ij} h_{ij} a_i^{\dagger} a_j + \frac{1}{2} \Delta_{ij} a_i^{\dagger} a_j^{\dagger} + \frac{1}{2} \Delta_{ij}^* a_j a_i$ can be written as $H = i \sum_{jk} A_{jk} c_j c_k$, up to a constant, with a real antisymmetric matrix A and Majorana fermions c_j .
- (b) Show that, for a translation-invariant system, the momentum-space BdG Hamiltonian satisfies $H_{BdG}(\mathbf{k}) = -\Sigma_1 H^*_{BdG}(-\mathbf{k})\Sigma_1$ where \mathbf{k} is the wave vector. Derive the relation this imposes between the BdG energy spectra $\{\varepsilon_{\mathbf{k}}\}$ and $\{\varepsilon_{-\mathbf{k}}\}$.
- (c) A two-dimensional (2D) topological superconductor furnishes a boundary mode such that $\varepsilon_{k=0} = 0$ and $\partial_k \varepsilon_k > 0$ for all k, where k is the wave vector along the boundary. Explain why this is a one-way mode. Show that the corresponding long-wavelength Hamiltonian is

$$H^{(\mathrm{lw})} = -i\hbar v \int \mathrm{d}x \, c \,\partial_x c, \quad \hbar v = (\partial_k \varepsilon_k)_{k=0},$$

where x is the coordinate along the boundary. Show that c(x) is a Majorana field. In $H^{(lw)}$, what plays the role of A from part (a)?

(d) A vortex in this 2D superconductor can be modeled as follows: We cut the superconductor into two halves along a line, thus creating two adjacent boundaries, the first with Majorana field $c_1(x)$ and the second with $c_2(x)$, with x the coordinate along the cut. Then, we glue the two halves back together by coupling the two boundaries via $2it \cos[\phi(x)/2] c_1(x)c_2(x)$, where the phase difference $\phi(x)$ between the two halves increases from $\phi(x < -R_c/2) = 0$ to $\phi(x > R_c/2) = 2\pi$ across a "vortex core" of size R_c around x = 0. The coupled boundaries have Hamiltonian $H^{(lw)} = \int dx h$ with

$$h = i\hbar v_1 c_1 \partial_x c_1 + i\hbar v_2 c_2 \partial_x c_2 + 2it \cos(\phi/2) c_1 c_2.$$

Explain why $\operatorname{sgn}(v_1) = -\operatorname{sgn}(v_2)$. Assuming $|v_1| = |v_2| = v$, show that the vortex binds a Majorana zero mode (MZM). Estimate the spatial extent of the MZM in terms of the system parameters v, t, and R_c . Argue that the MZM remains present even if $|v_1| \neq |v_2|$.

(e) A finite superconductor always has an even number of MZMs. Consider a finite disk of the 2D superconductor in part (c) and suppose that the system has M vortices. Deduce how the boundary conditions for c(x) must depend on M.

END OF PAPER