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1 This question discusses the two-dimensional surface code, the charge-flux model of
anyons, and Chern-Simons theory.

(a) Define e and m particles in the surface code and show that they obey the fusion
rules e×e = 1, m×m = 1, where 1 is the vacuum, or “identity”, particle. Show that
encircling an e with an m or vice versa yields phase exp(2iθem) = exp(2iθme) = −1.
Show that exchanging two e particles yields exp(iθee) = 1 and that the same holds
for m particles, exp(iθmm) = 1.

(b) Upon fusion, e and m yield the f particle: e×m = f . Show that exchanging two f
particles yields exp(iθff ) = −1. Compute the spin of the f particle and comment
on whether it is consistent with the spin-statistics relation.

(c) Define the charge-flux model of anyons and show that encircling a particle (q1,Φ1)
by a particle (q2,Φ2), where qj and Φj are particle charges and fluxes, respectively,
yields exp(2iθ12) with 2θ12 = (q1Φ2 + q2Φ1)/ℏ. (You may invoke the Aharonov-
Bohm and Aharonov-Casher effects without proof.)

Suppose that the charge-flux model has charge quantised in units of q0 and flux
quantised in units of Φ0. Furthermore, suppose that particles can be detected
only via encircling them by other particles; hence we identify particle n with 1 if
exp(2iθnp) = 1 for all particles p.

Suppose that a = (q0, 0) and b = (0,Φ0) satisfy exp(2iθab) = −1. Show that
a× a = 1, b× b = 1, and that c = a× b satisfies exp(iθcc) = −1. Hence interpret e
and m of the surface code in terms of the charge-flux model.

(d) Certain topologically ordered systems can be characterised by a 2×2 matrix K and
the assignment of 2-component vectors q to particles. Both K and q have integer
entries. Fusing particles q and q′ yields q+ q′. Encircling particle q by particle q′

yields exp(2iθqq′) with θqq′ = πq′ ·K−1q.

By computing braiding and fusion properties, show that the surface code can be
described by K = ( 0 2

2 0 ), with qe = ( 10 ) and qm = ( 01 ) for e and m particles,
respectively. In inspecting fusion, similarly to part (c), you may assume that
particles can be detected only through encircling them by other particles.
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2 This question is on the stabilizer formalism and on quantum error correction with
the surface code.

(a) A stabilizer group S is a subgroup of the n-qubit Pauli group Pn such that −1 /∈ S;
it defines a codespace L ⊂ H = (C2)⊗n as L = {|ψ⟩ ∈ H | g|ψ⟩ = |ψ⟩,∀g ∈ S}.
Show that if S = ⟨S1, S2, . . . , Sm⟩, with generators S1, S2, . . . , Sm, then S2

j = 1 and

Sj = S†
j , ∀j. Further show that dimL > 0 implies that S is Abelian. Define the

centralizer C(S).

(b) Consider a stabilizer code based on S. Describe error detection and define the
syndrome s. Suppose that the code suffered an unknown error from Pn, yielding s.
Explain why the only information that s reveals about the error is that it belongs
to Es C(S), where Es ∈ Pn is an error consistent with s.

The rest of the question is about the surface code on the square lattice, with qubits on the
links. Suppose that the code furnishes a single logical qubit with logical Pauli operators
Z̄ =

∏
j∈γ Zj and X̄ =

∏
j∈γ̃ Xj for suitable noncontractible paths γ and γ̃. Suppose

furthermore that the code is subject to the bit-flip channel, i.e., it suffers errors Xj with
probability p (with 0 ⩽ p < 1/2) independently on each qubit j.

(c) Relate the probability that an error belongs to EsX̄
qS, with q ∈ {0, 1}, to the

partition function Zs,q of the two-dimensional Ising model

Hs,q = −J
∑

vv′,n.n.

ηvv′(s, q)σvσv′ ,

where eβJ =
√

(1− p)/p with β the inverse temperature, σv ∈ {1,−1}, and the sum
is over nearest-neighbour (n.n.) v, v′. Define ηvv′(s, q) in terms of EsX̄

q.

(d) The Ising Hamiltonian Hs,q may need to be modified at boundaries. Consider the
surface code on a finite cylinder. Suppose that γ in Z̄ connects the cylinder’s two
boundaries. Define boundary stabilizer generators that allow for such Z̄ and show
that the system indeed furnishes a single logical qubit. Derive the modifications of
Hs,q accounting for the boundaries.
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3 The mean field theory of superconductors involves the Bogoliubov-de Gennes (BdG)
Hamiltonian HBdG which, in position representation, has structure

HBdG =

(
h ∆

−∆∗ −h∗
)

with matrices h and ∆. In position representation, particle-hole (PH) symmetry is
Σ1H

∗
BdGΣ1 = −HBdG, where Σ1 is the first Pauli matrix in the 2× 2 grading of HBdG.

(a) Show that any quadratic fermion Hamiltonian H =
∑

ij hija
†
iaj + 1

2∆ija
†
ia

†
j +

1
2∆

∗
ijajai can be written as H = i

∑
jk Ajkcjck, up to a constant, with a real

antisymmetric matrix A and Majorana fermions cj .

(b) Show that, for a translation-invariant system, the momentum-space BdG Hamilto-
nian satisfies HBdG(k) = −Σ1H

∗
BdG(−k)Σ1 where k is the wave vector. Derive the

relation this imposes between the BdG energy spectra {εk} and {ε−k}.

(c) A two-dimensional (2D) topological superconductor furnishes a boundary mode such
that εk=0 = 0 and ∂kεk > 0 for all k, where k is the wave vector along the boundary.
Explain why this is a one-way mode. Show that the corresponding long-wavelength
Hamiltonian is

H(lw) = −iℏv
∫

dx c ∂xc, ℏv = (∂kεk)k=0,

where x is the coordinate along the boundary. Show that c(x) is a Majorana field.
In H(lw), what plays the role of A from part (a)?

(d) A vortex in this 2D superconductor can be modeled as follows: We cut the
superconductor into two halves along a line, thus creating two adjacent boundaries,
the first with Majorana field c1(x) and the second with c2(x), with x the coordinate
along the cut. Then, we glue the two halves back together by coupling the two
boundaries via 2it cos[ϕ(x)/2] c1(x)c2(x), where the phase difference ϕ(x) between
the two halves increases from ϕ(x < −Rc/2) = 0 to ϕ(x > Rc/2) = 2π across a
“vortex core” of size Rc around x = 0. The coupled boundaries have Hamiltonian
H(lw) =

∫
dxh with

h = iℏv1 c1∂xc1 + iℏv2 c2∂xc2 + 2it cos(ϕ/2) c1c2.

Explain why sgn(v1) = −sgn(v2). Assuming |v1| = |v2| = v, show that the vortex
binds a Majorana zero mode (MZM). Estimate the spatial extent of the MZM in
terms of the system parameters v, t, and Rc. Argue that the MZM remains present
even if |v1| ≠ |v2|.

(e) A finite superconductor always has an even number of MZMs. Consider a finite disk
of the 2D superconductor in part (c) and suppose that the system has M vortices.
Deduce how the boundary conditions for c(x) must depend on M .
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