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(a) Let f:R™ — R be a convex function, C' C R™ a closed convex set and consider the
problem

f*:;rellggl{f(m):xEC}.

The projected subgradient method has iterates x;+1 = Po(x; — t;g;) where g; is a
subgradient of f at x;, Pc is the Euclidean projection on C' and t; > 0 is a step size.
Assuming that f is G-Lipschitz with respect to the Euclidean norm, and that z* is
an optimal solution of the problem, show that after k iterations we have

- Gllzo — "1

min{ f(xo),..., f(zr—1)} — f* < Vi

for a suitable choice of constant step size tg = --- = tx_1 =t (allowed to depend on
k, G, xo and x*).

Consider a linear program with optimal value p*,

*: . . <
p" = min{{c,z) : Ar < b} (1)

where A € R™*™ b € R™ and ¢ € R™ where m > n. We assume that the problem is
strictly feasible, and bounded (i.e., p* is finite).
(b) Derive the dual optimization program. Verify that weak duality holds. Explain

what is meant by strong duality. Does this linear program exhibit strong duality?

(¢) Show that there is M > 0 large enough such that the solution of the linear program
(1) is the same as the solution of the unconstrained minimization problem:

;IelliRr}LKc,x}—i—Mmax{O, (Az —b)1,...,(Az —b)m}}. (2)

[Hint: you may want to consider the optimal solution of the dual program of (1).]

(d) Let f(z) be the objective function in (2). Show that f is convex. Is f Lipschitz? If
yes, give a bound on the Lipschitz constant. For any x € R™ give an expression for
a subgradient of f at x.

Part I1I, Paper 339



NIVERSITY OF
AMBRIDGE 3

@)

(a) Consider the following convex minimization problem

1
min{”x—y”%:Oéxgland <a,a:>—b} (1)
zeRn | 2

where y € R",a € R™", b € R and the inequalities 0 < z < 1 are interpreted
componentwise. We assume the problem is strictly feasible. Use strong duality

to write down necessary and sufficient conditions for a point z* to be a solution

of (1). [Hint: your optimality conditions (after simplification, if necessary) should

only involve a single dual variable associated to the linear equality constraint.]

Deduce that the solution z* of (1) reduces to solving a one-dimensional nonlinear
equation. [10]

(b) State the definition of the proximal operator of a convex lower semi-continuous
function f : R® — R. Give necessary and sufficient conditions, in terms of the
subdifferential of f, to have prox; (y) = x for some z € R™. Prove the generalized
Moreau identity: prox,s(y) = y—tprox;,-1«(y/t) wheret > 0 and f* is the Fenchel
conjugate of f. [10]

(¢) Let C C R™ be a compact convex set and define

¢(x) = max (z,v) . (2)

veC

Show that for ¢ > 0, prox,,(y) = y—tPc(y/t) where P is the Euclidean projection
on C. [10]

(d) Given an integer k € {1,...,n—1}, and = € R", let h(z) be the sum of the k largest
components of z, i.e.,
h(z) = S B (3)

where z[1] > ... 2 x|, are the components of z € R" sorted in nonincreasing order.
Show that h can be put in the form (2) where C' is a convex set of the form

C={veR":0<v<1,(a,v)=>b}

for some a € R™ and b € R to be specified. Use parts (a) and (c) to explain how the
proximal operator of h can be evaluated. [You do not need to explain how to solve
one-dimensional nonlinear equations.] [10]

(e) Consider a minimization problem of the form
in 14z — b + Ab()
min — —
zeR™ 2 v 2 .

where A > 0 and h(z) is the function defined in (3). Write down a proximal gradient
algorithm for the problem above, and explain how the step size should be chosen.
Comment on the convergence rate. [10]

Part III, Paper 339 [TURN OVER]



5 UNIVERSITY OF
¥ CAMBRIDGE 4

END OF PAPER

Part I1I, Paper 339



