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1 Consider the integral

I(λ) =
1

λ1/2

∫ ∞

0
e−s+2λ−λ2/sds.

(a) Show that, for λ ∈ R, 0 < λ≪ 1,

I(λ) ∼ 1

λ1/2
+ 2λ1/2 + λ3/2(1 + 2 lnλ+ 2γe).

You may use without proof the identity

∫ ∞

0
ln(t)e−tdt = −γe,

where γe is the Euler-Mascheroni constant.

[Hint: You will find it useful to divide the integral into two parts, one over the range s = 0
to δ2, and the other from s = δ2 to ∞, where

0 < λ≪ δ ≪ 1,

and ignore terms containing δ4 or higher powers of δ.]

(b) For λ ∈ R, λ→ ∞, use the method of steepest descents to show that

I(λ) ∼ √
π.

You may use the result
∫∞
−∞ e−as

2
ds =

√
π/a without proof.

(c) If λ = eiπ/4|λ|, |λ| → ∞, determine the location of the saddles and show that
the steepest descents path satisfies

r

|λ| sinψ +
|λ|
r

cosψ =
√
2,

where s has the polar representation s = reiψ. Sketch this contour.
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2 (a) A weakly perturbed oscillator satisfies the equation

d2u

dt2
+ u = ϵf

(
u,
du

dt
, ϵt

)
, 0 < ϵ≪ 1.

By using the method of multiple scales show that the leading-order solution takes the form
u ∼ R(T ) cos (t+ ϕ(T )), where

dR

dT
= −⟨f sin(t+ ϕ)⟩ , R

dϕ

dT
= −⟨f cos(t+ ϕ)⟩ ,

in which T = ϵt and ⟨. . .⟩ denotes the average over the fast time period.

(i) Find R(T ) and ϕ(T ) explicitly in the case

f = −u
(
du

dt

)2

subject to the initial conditions u = 1 and du/dt = 0 at t = 0.

(ii) Find R(T ) and ϕ(T ) explicitly in the case

f = −u2du
dt

subject to the initial conditions u = 1 and du/dt = 0 at t = 0.

(b) Derive the leading order solution of the WKB equation

d2y

dx2
+
(
1 + (ϵx)3

)2
y = 0, 0 < ϵ≪ 1,

which is uniformly valid in x ⩾ 0, with boundary conditions y = 0, dy/dx = 1 on x = 0.

[Hint: You may start by posing the WKB ansatz

y ∼ (A0(X) + ϵA1(X) + . . .) exp

(
± i
ϵ

∫
k(X)dX

)
,

where X = ϵx for some suitable k(X).]
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3 (a) In dimensionless form, the equation for the vibrational modes of a stretched
beam occupying the region −1 ⩽ x ⩽ 1 is

ϵ2
d4y

dx4
− d2y

dx2
− ω2y = 0.

The beam has low stiffness, i.e. 0 < ϵ≪ 1, and its ends are clamped:

y(±1) =
dy

dx
(±1) = 0.

Prove that the leading order symmetric eigenfunction takes the form

y ∼ y0 = a cosω0x,

where the fundamental frequency is

ω ∼ ω0 = π/2.

Show that there is an inner region of size O(ϵ) about each end and determine the leading
order inner solution. Match this to the leading, and second-order outer solution

y1 = b cos
πx

2
− ω2

1a

π
x sin

πx

2

(which you should derive), to show that the correction to the fundamental frequency of
vibration is

ω2 ∼ π2

4
+
π2

2
ϵ+O(ϵ2).

(b) Consider the equation

ϵ
d2y

dx2
+ (1 + x)3

dy

dx
+ y = 0,

with y(0) = y(1) = 1. Find the leading terms in the inner and outer expansions as ϵ→ 0,
and write down an additive composite expansion which is uniformly valid to O(1).
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