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1 Let ψ be a time-harmonic acoustic field propagating in a 2-dimensional medium
with refractive index n = n(x, z), so that the wave equation for ψ can be written as

[∇2 + k20n
2]ψ = 0 , (1)

where k0 is the wavenumber of a wave propagating in free space.

(i) Consider the field ψ

ψ(x, z) = E(x, z)eik0x (2)

propagating at a small angle with respect to the x-direction, where E(x, z) is a slowly-
varying function of x, and derive the parabolic wave equation for E by factorising the
differential operator in (1) using the operators

A =
∂

∂x
and B =

√
1

k20

∂2

∂z2
+ n2

Explain under what condition it is a good approximation and what physical effects
are being neglected.

(ii) Using the operators D and S defined by:

D =
i

2k0

∂2

∂z2
, S =

ik0
2

(n2 − 1) ,

and assuming that the operators D and S nearly commute over a small interval ∆x, write
an approximate expression for the solution to the parabolic equation, E(x0 +∆x, z) at a
plane x1 = x0 +∆x, given in terms of E(x0, z) .

Give conditions under which the assumption that D and S nearly commute is valid,
and comment on any other approximations you need to derive this approximate solution.

Hence define a suitable Ẽ0(x0, z) such that E(x, z) is the approximate solution of
the initial value problem

∂E

∂x
= DE in the interval [x0, x0 +∆x] (3)

with initial condition Ẽ0(x0, z) .

(iii) Explain how the solution E(xm, z) at a plane x0 +m∆x, for a positive integer
m, can be found using this method, given E(x0, z). [You need not write the solution
explicitly.]
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2 A time-harmonic wave ψ(r)e−iωt with wavenumber k0, travelling in three-
dimensional free space, is incident upon an inhomogeneity with refractive index n(r) which
occupies a volume D.

(i) Derive the first term of both the Born and the Rytov approximations for the
space-dependent part of the total field at point r, and denote them respectively by ψB(r)
and ψR(r).

Show that the first order term in a power series expansion of the Rytov approxim-
ation is equal to the first-order Born approximation.

(ii) In the case where the incident field is a monochromatic plane wave propagating
with wave number k0 in a direction r0, derive far-field approximations to ψB(r) and ψR(r).

(iii) For the same incident wave as in (ii), assume that the refractive index in D
is n(r) = 1 +W (r), where W (r) is a statistically stationary random function of position
with Gaussian p.d.f. and mean zero, and with variance <W 2(r)> ≪ 1.

The mean intensity in the Rytov approximation is given by

I(r) =< ψ∗
R(r)ψR(r) > (1)

Derive an expression for I(r) in the far field in terms of the autocorrelation function of
the ‘scattering potential’ V = k20[n

2(r)− 1].

[You may wish to use Re(f) = 1
2(f + f∗), for a complex function f ; and the Taylor

expansion when calculating < exp(ϕ) > for a random phase ϕ.]
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3 Given the equation
Ax = y , (1)

where A : X → Y is a given compact linear operator between two Hilbert spaces, and
x ∈ X, y ∈ Y , consider the inverse problem of finding x, given data y.

(i) Define the Moore-Penrose generalised inverse operator A†, and explain how
x† = A†y approximates the solution x to the problem given by (1), when it exists.

(ii) Define the Landweber iteration scheme for finding the solution to the normal
equation associated with (1), and write an equation for the (n+ 1)th iterate.

Given y ∈ D(A†), state a sufficient condition for the convergence of this Landweber
iteration, and state its limit. (You do not need to provide a proof.)

(iii) Show that Landweber iteration is equivalent to minimising the functional

J(x) =
1

2
∥ Ax− y ∥2 (2)

with a gradient descent method. Here ∥ · ∥ denotes the L2 norm.

(Recall: gradient descent is a method for finding a (local) minimum of a multivariable
differentiable function (or functional) F (x) using successive iterates xn+1 = xn − γF ′(x),
with γ ∈ R+.)

(iv) By using the choice x0 = 0, write the (n+ 1)th iterate in Landweber iteration
non-recursively as a finite sum

∑n
k=0 of an appropriate expression.

Hence, relate a convergent Landweber iteration to the power expansion of (A∗A)−1, where
A∗ is the adjoint of A.

END OF PAPER
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