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1 Inertial oscillations on a β-plane
(a) Consider a local Cartesian coordinate system where x points to the east, y points

to the north, and z is the local vertical direction. The angular velocity vector associated
with the Earth’s rotation can then be written Ω = (0,Ωcos θ,Ωsin θ) in Cartesian
coordinates where θ is the latitude. State the traditional and β-plane approximations.
If U and W are characteristic horizontal and vertical velocity scales, respectively, and
L and H are characteristic horizontal and vertical length scales, explain the necessary
conditions for the traditional and β-plane approximations to hold.

(b) Consider the movement of a drifter floating on the surface of the ocean in
the absence of wind. Let the position of the drifter at time t = 0 be (x, y) = (0, 0)
in local Cartesian coordinates, and let the horizontal velocity of the drifter at t = 0
be (u, v) = (0, V ). Assume that the drifter moves with the local fluid velocity and
assume that the fluid velocity is horizontally uniform. Invoking the traditional and β-
plane approximations and clearly stating any other assumptions, show that the drifter
position (x(t), y(t)) satisfies

ẋ = f0y +
1

2
βy2, (1)

ẋ2 + ẏ2 = V 2, (2)

and provide physical interpretations for these two equations, where ˙( ) denotes a time
derivative. Hence, show that the north/south position of the drifter satisfies the following
ordinary differential equation:

ẏ2 = V 2 −
(
f0y +

1

2
βy2

)2

. (3)

If the equator corresponds to the location where f0 + βy = 0, find a necessary condition
for the particle to stay in the Northern Hemisphere (with f0 + βy > 0). Note that you do
not need to obtain explicit solutions to equation (3).

(c) Let

β̃ ≡ βV

f20
. (4)

For β̃ ≪ 1, find explicit expressions for the position of the drifter described in part (ii)
that is valid to O(β̃). Show that this corresponds to circular motion superposed with a
westward drift and write an expression for the speed of the westward drift. Provide a
physical explanation for the westward drift, along with a sketch of the drifter trajectory,
indicating the direction of travel.
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2 Ekman pumping and Sverdrup balance
The incompressible Navier-Stokes equations for a fluid with a uniform density, ρ, in

a rotating reference frame with Coriolis parameter, f , can be written

∂u

∂t
+ u · ∇u+ f ẑ× u = −1

ρ
∇p+ ν∇2u, (1)

∇ · u = 0. (2)

(a) Consider a spatially variable wind stress applied to the surface of the ocean at
z = 0 such that τ = (ρνuz, ρνvz), where u and v are the x and y components of the
velocity and the subscript denotes a partial derivative. Starting from the incompressible
Navier-Stokes equations given above, derive an expression for the vertical velocity at a
depth z = −h, which is sufficiently deep such that the viscous stress at z = −h can be
neglected. You may assume that the Rossby number is small. Clearly state any other
assumptions.

(b) Now model the ocean interior as a shallow layer of fluid occupying the region
between z = −H and z = −h, whereH > h and with boundary conditions w(z = −H) = 0
and where w(z = −h) is set from your solution in part (a). You may assume that the
Rossby number is small and that the flow is inviscid in the ocean interior. Clearly state
any other assumptions. If f = f0 + βy, find the steady state solution for the velocity in
the ocean interior.

(c) Derive an equation for the evolution of the shallow water potential vorticity in
the ocean interior (the region between z = −H and z = −h) with the same boundary
conditions as given in part (b), where H = H(x, y) and h = h(x, y). Using this result or
otherwise, sketch the steady circulation with small Rossby number in a situation where
∇(H − h) = (c, 0), c is a positive constant, and w(z = −H) < 0. Explain your reasoning
and discuss the physical mechanisms associated with this flow.
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3 Flow over a ridge – Atmospheric internal gravity waves
(a) Write down the Boussinesq equations for stably stratified, ideal-fluid flow in an

inertial (non-rotating) frame of reference and briefly state the conditions for their validity.
Linearize the equations about a basic state in which the buoyancy frequency is N = N(z),
where z is vertically upwards, and the flow is in the positive x direction with velocity
(u(z), 0, 0), only considering two-dimensional disturbances that depend on x, z, t (v = 0
w.l.o.g.).

(b) Show that
Dt(u

′
z − w′

x) + uzzw
′ + σ′x = 0, (1)

where σ′ is the disturbance buoyancy, Dt is the linearized material derivative, Dt =
∂t + u ∂x, and the other symbols are disturbance fields in standard notation. Deduce
that

D2
t

[
w′
xx + w′

zz

]
− uzzDtw

′
x +N2w′

xx = 0, (2)

(c) Consider stationary wave disturbances of the form w′ = ŵ(z) exp(ikx−iωt) (real
part implied). Show that ŵ satisfies

ŵzz +m2(z)ŵ = 0, (3)

where
m2(z) = l2(z)− k2, (4)

and with l(z) given by

l2(z) =
N2(z)

[
u(z)− ω

k

]2 − uzz[
u− ω

k

] . (5)

(d) Consider waves where the horizontal phase velocity of the wave is c = ω/k = 0.
Assuming that the vertical scale on which l(z) varies is larger than that of the wave
disturbances and imposing suitable boundary conditions, briefly discuss the qualitative
nature of such disturbances including the tendency of the waves to be vertically trapped
when u(z) increases with altitude, or when N2(z) decreases with altitude, or both.

(e) At the bottom boundary, ŵ(0) = 0. Show that

k2 =

∫ z
0 (l

2ŵ2 − ŵ2
z′) dz

′
∫ z
0 ŵ

2 dz′
. (6)

(f) Assume that k2 is stationary with respect to small changes in ŵ(z). By
considering small changes dk and dc, derive a formula for the group velocity, ∂ω/∂k.
Hence, deduce that when l2 > −N2/u2, waves generated by flow past a ridge will always
appear downstream of the ridge.
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4 Transformed Eulerian Mean equations
The Transformed Eulerian Mean equations are

ut − f0v
∗
a = −

(
u′v′

)
y
+

(
f0ρ′v′

dρs/dz

)

z

, (1)

f0u = −py
ρ0
, (2)

ρg = −pz, (3)

v∗a,y + w∗
a,z = 0, (4)

ρt + w∗
a

dρs
dz

= 0, (5)

where symbols have their usual meanings and the subscripts x, y, z and t denote partial
derivatives with respect to the spatial directions and time respectively. The subscript a
denotes the ageostrophic component. ρs is the density variation in the hydrostatically
balanced basic state.

(a) Briefly describe, without detailed calculations, how the Transformed Eulerian
Mean equations are obtained from the Boussinesq β-plane primitive equations. Recall
that the Eulerian mean velocities (va, wa) are related to the Transformed Eulerian Mean
velocities by (v∗a, w

∗
a) by

w∗
a = wa +

(ρ′v′)y
dρs/dz

, v∗a = va −
∂

∂z

[
ρ′v′

dρs/dz

]
.

(b) Define a streamfunction such that (v∗a, w
∗
a) = (χ∗

a,z,−χ∗
a,y) and show that the

Transformed Eulerian Mean equations can be written as

f20χ
∗
a,zz +N2χ∗

a,yy = −f0(∇ · F)z (6)

where F = (0, F
(y)
, F

(z)
) is the zonally averaged Eliassen-Palm flux. You should give

expressions for F
(y)

and F
(z)

.

(c) For the remainder of this question, consider a flow at small Rossby number
confined to a β-plane longitudinal channel with rigid walls at y = 0, L and with 0 < z <∞.
Waves are generated by topographic perturbations on the lower boundary. The buoyancy
frequency, N , is assumed to be constant. The real part of the variation in the quasi-
geostrophic streamfunction can be written in the form

ψ′ = ℜ
[
ψ̂(z)eikx sin

πy

L

]
.

Show that the Eliassen-Palm flux is purely vertical and of the form F
(z)

=
F0Θ(z) sin2 πy

L where F0 = f20 /N
2 and Θ(z) is a function of z.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Now, assume instead that Θ(z) is a simple step function with

Θ(z) =

{
1 z < H

0 z > H.
(7)

This is a simple representation of a situation where waves are generated far below z = H,
propagate upwards, and dissipate in a thin critical layer localised about z = H. By
expanding the wave forcing and the solution in a Fourier series or otherwise, solve
Equation (6) for χ∗

a, stating suitable boundary conditions. Find expressions for the
acceleration ut and the rate of change of density ρt.

(e) Derive an equation relating the Eulerian mean streamfunction to the Trans-
formed Eulerian Mean streamfunction. Sketch the form of the response in χ∗

a, ut, ρt and
χa in the (y, z) plane. Comment on the response as seen in the Eulerian mean view versus
the Transformed Eulerian Mean view, paying particular attention to the effects of vertical
advection of the mean flow and eddy density fluxes.

(f) Suppose now that the region where the wave dissipates has a vertical scale D.
Consider the dominant balances in the momentum equation when the shallow forcing limit
where ND

f0L
<< 1 and the deep forcing limit ND

f0L
>> 1 and comment on the nature of the

response.

END OF PAPER
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