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1 Draining gravity current
A fluid with dynamic viscosity µ and density ρ flows as a two-dimensional gravity

current over a sponge of thickness h(p) and permeability k(p) such that k/h ∝ p−β, where
p is the overburden pressure on the top of the sponge and β is constant. The gravity
current is supplied with fluid at the fixed horizontal location x = 0 with a volume flux
proportional to tα, where t is time and α is constant. The air above the gravity current and
below the sponge are at equal pressures. The gravity current, whose thicknessH(x, t) ≫ h,
therefore partially drains through the sponge as it flows. The sponge is supported by a
fixed, rigid, porous base that allows fluid to pass through it freely.

(i) Calculate the vertical volume flux through the sponge as a function of H.

(ii) Starting from the equations for quasi-parallel flow and conservation of mass,
derive a partial differential equation and boundary conditions sufficient to determine
H(x, t).

(ii) Find a functional relationship between α and β that allows the governing
equations to admit a similarity solution, and write down the form of the similarity solution
in terms of α.

(iv) For the particular case α = 2, determine the ordinary differential equation
and boundary conditions that describe the shape of the gravity current. Determine the
functional form of the leading edge of the current.
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2 Penetrative convection
Water has a nonlinear equation of state such that its density is given by

ρ = ρm
[
1− α(T − Tm)2

]
,

where ρm is the maximum density, achieved at temperature T = Tm [4◦C], and α is
constant.

(i) Sketch the density field in a layer of water whose upper boundary has a
temperature lower than Tm and whose lower boundary has a temperature greater than
Tm. Give a brief explanation of where you would expect convection to occur.

A deep body of water has its upper surface maintained at temperature Ts < Tm.
The water is stagnant and has a constant temperature gradient in 0 < z < h, where z
measures vertical distance below the surface. The water below z = h has a uniform, mean
temperature Tw > Tm and convects turbulently, driven by the density difference between
the water at z = h and the water below.

(ii) By considering the local Rayleigh number associated with a boundary layer just
below z = h, or otherwise, assuming that h > 0, determine an expression for the heat flux
across z = h in terms of Th, Tm and Tw, where Th = T (z = h). [You should define any
variables that you introduce.]

(iii) Maximise your expression for the heat flux with respect to Th to show that the
maximum convective heat flux is proportional to (Tw − Tm)5/3. How does the constant of
proportionality depend on the material properties of the system?

(iv) Assuming that the system adjusts itself to achieve this maximum flux, determine
the steady thickness h of the stagnant layer as a function of Tw, given the boundary
temperature Ts. Estimate the largest interior temperature of an ice-covered lake for which
there is a stagnant layer of water below the ice.

(v) Now consider a lake of depth H with constant surface temperature Ts < Tm.
Write the heat flux from the convecting region as (k∆T/H)Fθ(t)5/3, where k is the thermal
conductivity of water, θ = (Tw(t) − Tm)/∆T , ∆T = Tm − Ts and F is a constant, and
consider the case that F ≫ 1. Write down a dimensionless equation for the time evolution
of θ, in which the depth of the stagnant region is scaled with H and time is scaled with
the diffusion time over a distance H. Given that θ(0) = 1, determine that

θ =
(
1 + 2

3Fτ
)−3/2

,

where τ is the scaled time.

(vi) For what values of θ and for what times does this solution remain valid as the
leading order behaviour for F ≫ 1? Show that the Rayleigh number for the convecting
region remains large while 1− h/H is of order unity (not too small).
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3 Icicle ripples
An icicle is modelled in two dimensions as a vertical sheet of ice at its freezing

temperature Tm, having a thin film of melt water with unperturbed uniform thickness h
flowing down it, surrounded by cold air with temperature less than Tm. The icicle grows
laterally by freezing from the film of water. The rate of solidification is much smaller than
the flow rate in the film so that the prescribed flux q of water in the film can be assumed
to be constant and uniform. In Cartesian coordinates, the unperturbed surface of the ice
is at x = 0, while z measures vertical distance downwards.

(i) Consider the flow in the film of water when the ice–film interface is perturbed to
x = η1e

iαz+σt and the film–air interface takes position x = h+ η2e
iαz+σt, where η1 and η2

may be complex. Use the results of lubrication theory, linearised for |η1,2| ≪ h, to show
that

h =

(
3νq

g

)1/3

and that
η2 =

η1
1− iΓα3h

,

where Γ = γ/3ρg, γ is the water–air surface tension, ν and ρ are the kinematic viscosity
and density of water, respectively, and g is the acceleration due to gravity.

(ii) Assuming that the unperturbed temperature field in the air is linear with
gradient (Ta − Th)/δ for some temperature Ta and length scale δ, where Th = T (x = h),
show that

Tm − Th =
ϵ

1 + ϵ
(Tm − Ta), where ϵ =

ka
kw

h

δ

and ka, kw are the thermal conductivities of air and water respectively. Determine the
unperturbed lateral solidification rate V of the icicle, taking care to identify all material
parameters involved.

(iii) In what follows, take the limits ka/kw ≪ 1, ϵ ≪ 1 with Γα3h =O(1), in addition
to the thin-film approximation αh ≪ 1. [Be careful to discard asymptotically small terms
only in comparison with terms that are known to be O(1).]

With the interfaces perturbed as above, consider perturbations to the temperature
fields in the liquid film and the air, applying a quasi-stationary approximation and ignoring
any advective heat transfer. You may assume that the ice–film interface remains at
temperature Tm (ignore the Gibbs-Thompson effect) and that temperature and heat flux
are continuous at the film–air interface.

Derive the complex dispersion relation

h

V
σ =

αh

1− iΓα3h
.

Hence, determine the wavenumber αm that has the largest growth rate in terms of Γ and
h and the corresponding phase speed of the ensuing ripples in terms of V .
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