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1 Euler’s equations in cylindrical coordinates are (setting ρ = 1 for simplicity)
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where the velocity components u, v and w are in the radial, azimuthal and axial directions
respectively, p is the pressure and the condition for incompressibility is ∂(ru)/∂r+∂v/∂θ+
r∂w/∂z = 0.

(i) Derive the linearised equations around the steady base state (u, v, w) = (0, rΩ(r), 0)
(where Ω(r) is the angular velocity) for a small disturbance which has the normal
mode form [

u′(r), v′(r), w′(r), p′(r)
]
exp(σt+ imθ + ikz). (∗)

(ii) Reduce the system in (i) down to a second order equation for u′ and hence derive
Rayleigh’s criterion for stability for the appropriate subset of disturbances (you can
assume the flow is bounded between two solid walls at ri and ro > ri).

(iii) A cylindrical vortex sheet located at r = R0 has the associated flow

Ω(r) =

{
0 0 ⩽ r < R0,
Ω0(R0/r)

2 R0 < r < ∞.

Consider a 2D disturbance (with ∂/∂z = 0 but general r and θ dependence) which is
irrotational away from the vortex sheet by adopting the velocity potential ϕ(r, θ, t)
(where u = ∇ϕ) so that

ϕ =

{
ϕ1 0 ⩽ r < R0,

Γ0θ + ϕ2 R0 < r < ∞.

where Γ0 = Ω0R
2
0 and ϕ1 and ϕ2 represent the small disturbance.

(a) Write down the kinematic conditions at the vortex sheet which link ϕ1, ϕ2 and
ξ(θ, t), the radial displacement of the vortex sheet away from its equilibrium
position.

(b) Using the time-dependent Bernoulli relation ∇
[
∂ϕ
∂t +

1
2 |∇ϕ|2 + p

]
= 0 and an

azimuthal wavenumber m (as in (∗)), show that the dynamical condition (to be
evaluated at r = R0) is

σ(ϕ1 − ϕ2)−
imΓ0

R2
0

ϕ2 +
Γ2
0

R3
0

ξ = const.

(c) Hence show that for this specific choice of Ω(r), the growth rate of the perturb-
ation is given by

σ =

[
−1

2
im± 1

2

√
m2 − 2m

]
Ω0

and so that an instability exists.
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Consider the following simple model of Rayleigh-Benard convection

∂w

∂t
+

∂3(12w
2)

∂z3
= ∆3w −R∆1w

for −∞ < x, y < ∞ and 0 < z < 1 with

w =
∂2w

∂z2
=

∂4w

∂z4
= 0 at z = 0, 1.

Here R represents the Rayleigh number and ∆1 := ∆− ∂2/∂z2 = ∂2/∂x2 + ∂2/∂y2.

(i) Taking normal modes of the form w′ = W (z)f(x, y)est to solve the linearized
problem, show that

W = Wj = Aj sin jπz for j = 1, 2, . . . and ∆1f + a2f = 0,

where a is any real number and give an expression for s = s(a,R, j). For a given
value of a, show that the j = 1 mode is unstable first as R increases and find this
critical value Rc(a).

(ii) Taking the ‘roll cell’ w1 = A cos ax sinπz as the fundamental in the weakly nonlinear
problem, deduce that its Landau equation is

dA

dτ
= a2(R−Rc)A− 1

4
π3(2d0 + d1)A

3 (∗)

where τ is a suitably defined slow time variable,

d0 =
1

64π3
and d1 =

π3

60(π2 + a2)3
.

(iii) Sketch a bifurcation diagram for the equation (∗) in the (R − Rc, A) plane clearly
indicating the behaviour of A(τ) for values of R < Rc and R > Rc and indicating all
equilibrium solutions.
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(i) State the condition for a matrix L ∈ Cn×n to be non-normal and demonstrate how
non-normality can lead to transient energy growth in the system ẋ = Lx by showing
it in a simple n = 2 example.

(ii) Show that if L is non-normal and diagonalisable then there is still a norm in which
no growth is ever possible if all the eigenvalues indicate damped behaviour.

(iii) Now consider the matrix

L =

[
λ1 0
1 λ2

]

where λ1 and λ2 are both real and negative.

(a) Show that the solution of ẋ = Lx is x(t) = Ax(0) where

A =

[
eλ1t 0

eλ1t−eλ2t

λ1−λ2
eλ2t

]

(b) Derive a quadratic equation whose roots are the maximum and minimum growth
possible after a time t in the standard norm |x|2.

(c) Take the limit λ1 → λ2 = λ of the quadratic first to get a simpler expression for
the maximum growth at a given t.

(d) Now take your result in (c) and consider the limit λ → 0. Deduce the optimal
time tm at which the growth is maximal across all t. Give this maximal value of
the growth at tm.
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