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1 A thin sheet of very viscous fluid flows with a characteristic velocity U between two
rigid surfaces with a characteristic gap width H that varies on a length scale L≫ H. Show
by means of scaling arguments that the characteristic shear stress τ and characteristic
pressure variations P satisfy τ/P ≪ 1.

The thin gap between two rigid spheres of radius a and a + ∆, with 0 < ∆ ≪ a,
is filled with fluid of viscosity µ. The outer sphere is stationary, and motion of the inner
sphere causes flow in the gap, which is described by the lubrication equations. The centre
of the inner sphere is a distance λ∆ (with −1 < λ < 1) directly below the centre of the
outer sphere. Show by means of a sketch, or otherwise, that the gap width h(θ) between
the spheres is approximately given by

h = (1− λ cos θ)∆,

where θ is the angle to the downward vertical.

(i) Show that when the inner sphere moves downwards with speed
V = (dλ/dt)∆ the local width-integrated flux is given by q = 1

2V a sin θ. Deduce that
the fluid pressure is given by

p(θ) =
3µa2V

λ∆3(1− λ cos θ)2
+ const.

and calculate the vertical force F acting on the inner sphere.

[You may assume that

∫ b

−b

t dt

(1− t)2
=

2b

(1− b)2
+ ln

(1− b

1 + b

)
for |b| < 1. ]

(ii) Calculate also the couple G acting on the inner sphere when it rotates with
angular velocity Ω about the vertical axis.

[You may assume that

∫ b

−b

(c2 − t2) dt

1− t
= 2b+ (1− c2) ln

(1− b

1 + b

)
for |b| < 1. ]

(iii) The inner sphere now rotates with angular velocity Ω′ about a horizontal axis,
with its centre held stationary. The motion results from a horizontal couple G′ applied to
the inner sphere about its centre, together with, if λ ̸= 0, a horizontal force F ′ to hold the
centre stationary. Explain why no vertical force is necessary.

Let λ = 1− ϵ, where 0 < ϵ≪ 1. Show that h = O(ϵ∆) in a small circular region on
the inner sphere of radius O(ϵ1/2a).

Use scaling arguments to show that the contributions to the couple G′ from the
region where h = O(∆) and from the region where h = O(ϵ∆) are both of magnitude
O(µΩ′a4/∆).

Estimate similarly the magnitude of the contributions to the horizontal force F ′

from these regions.
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2 (a) State the reciprocal theorem for two Stokes flows in which the body forces are
zero. Prove that the resistance matrix, giving the force F and couple G exerted by a rigid
body moving with velocity U and angular velocity Ω through unbounded viscous fluid
otherwise at rest, is symmetric.

(b) Such a rigid body comprises three equal straight rods,
extending from X1 = (−1, 0,−1)L to X2 = (1, 0,−1)L, from
Y1 = (0,−1, 1)L to Y2 = (0, 1, 1)L and from Z1 = (0, 0,−1)L
to Z2 = (0, 0, 1)L, and joined at their intersections Z1 and
Z2. Rotations and couples are defined to be about the mid-
point O = (0, 0, 0).

X1 X2

Y2

Y1

Z1

Z2

O x

y

z

Use symmetry arguments to show that if F = (0, 0, F ) and G = 0 then the body
translates in the z-direction and does not rotate. Write down which components of U and
Ω are nonzero if, instead, F = (F, 0, 0) and G = 0.

(c) The force per unit length exerted by the rods is given by the usual slender-body
formula

f(X) = C(I− 1
2X

′X′) · Ẋ ,

where C = 4πµ/ ln(1/ϵ) is a constant and X is the position along the rod. Use simple
arithmetic to calculate the nonzero Cartesian components of F and G when the body
translates with speed U (and Ω = 0) in each of the three coordinate directions. Deduce
that G is proportional to (Uy, Ux, 0) for any velocity U = (Ux, Uy, Uz) when Ω = 0.

When Ω = (Ωx,Ωy,Ωz) and U = 0 the couple exerted by the body is G =
CL3(133 Ωx,

13
3 Ωy,

4
3Ωz). Combine this information with results from parts (a) and (c)

to write down the full 6× 6 resistance matrix.

(d) Show that if F = CLk and G = 0 then

U = (αkx, αky,
1
5kz) and LΩ = (−γky,−γkx, 0) ,

where the numerical coefficients α and γ are to be determined.

(e) The coordinates and components of vectors above are defined with respect to
the axes fixed in the body, which will be rotating in space if Ω ̸= 0. The body is actually
falling under gravity so that F is fixed in space (vertically downwards) andG = 0. Explain
why the components of k, still defined with respect to axes fixed in the body, obey

d

dt
(kx, ky, kz) =

γ

L

(
kxkz, −kykz, k2y − k2x

)
.

Show that if Ω is constant and nonzero then k must be parallel to (1, 1, 0) or
(1,−1, 0). Describe with the aid of a sketch the orientation and motion of the body in
physical space if k = (1, 1, 0). [Detailed calculation is not required.]

If, instead, k = (1, 0, 0) at t = 0, describe briefly the subsequent motion of the body
in physical space including its orientation as t→ ∞. [Detailed calculation is not required.]
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3 (a) An infinite fluid cylinder of radius a0, viscosity µ and (uniform) surface tension
γ has perturbations to its shape given by r = a(z, t) in cylindrical polar coordinates, where
a = a0 + η(z, t), |η| ≪ a0 and |∂η/∂z| ≪ 1. Calculate the linearised perturbation to the
curvature. State the linearised boundary conditions on the resulting flow.

State the Papkovich–Neuber representation for Stokes flow.

For η ∝ eikz+st (with real part understood), the flow is given by potentials
Φ =

(
P I1(kr)e

ikz+st, 0, 0
)
and χ = Qk−1 I0(kr)e

ikz+st, where P and Q are constants
and I0(x) and I1(x) are modified Bessel functions. Calculate the corresponding velocity
components u and w and the tangential stress σrz. Deduce that P and Q satisfy

Px
dI1
dx

+Q
dI0
dx

= 0 when x = ka .

(b) Now consider the case of a cylinder covered with a concentration C(z, t) of
insoluble surfactants. The (nonuniform) surface tension is given by

γ(C) = γ0 −AC ′ ,

where γ0 and A are positive constants, C ′ = C − C0, |C ′| ≪ C0, and C0 is the uniform
concentration if a = a0. Diffusion of surfactant is negligible.

Assume that the long-wavelength limit is extensional flow (like the case A = 0),
with w(z, t) independent of r and u(r, z, t) given by mass conservation. At leading order
the nonlinear evolution equations can be written

∂

∂z

{
πa2

(
− γ

a
+ 3µ

∂w

∂z

)
+ 2πaγ

}
= 0,

Da2

Dt
= −a2∂w

∂z
,

DC

Dt
= −C

(∂w
∂z

+
u

a

)
.

Describe the physical interpretation of the various parts of the first and third equations.

Obtain linearised equations for small perturbations to a uniform state with a = a0,
C = C0, γ = γ0 and w = 0, such that there is no perturbation to the net axial force πa0γ0.
Deduce that a0C

′(z, t) = C0η(z, t)+ψ(z), where ψ is determined by the initial conditions.

Show further that
∂η

∂t
= sη − Aψ(z)

6πµa0
,

where the constant s is to be determined.

Initially η = 0 and C ′ > 0. Describe physically what happens to η and C ′ (and why)
in each of the cases (i) A < γ0/C0 and (ii) A > γ0/C0.

(c) Now consider the case A > γ0/C0 with initial conditions in which aγ = a0γ0,
but a and γ are nonuniform. According to the extensional-flow equations in part (b),
these conditions would result in there being no flow (w = 0). By considering the capillary
pressure, explain briefly why that cannot actually be true.

Assume that the flow should instead be described by lubrication theory, with an
axial Poiseuille flow driven by the pressure gradient. Use simple scaling arguments to
show that ∂η/∂t ∼ (γ0a0/µL

2)η, where L is the axial length scale of variation.
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