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1

(a)

(i) Define the Schwartz space S(R) and the space of tempered distributions
S ′(R). Define the Fourier transform on each of these spaces.

(ii) Show that if f ∈ L1(R) ⊂ S ′(R) then the Fourier transform f̂ ∈ S ′(R) can
be identified with a bounded, continuous function.

(b) Let u ∈ S ′(R) be defined by the function

u(x) =

{
1/x, x > 1

0, x ⩽ 1.

(i) Show that for φ ∈ S(R)

⟨û, φ⟩ =
∫

φ′(λ)v(λ) dλ where v(λ) = −i

∫ ∞

1

e−iλx

x2
dx.

(ii) Show that v ∈ C(R) ∩ C∞(R \ {0}).

(iii) Establish the following identity for v when λ ∈ (0, 1)

v(λ) = λ log |λ| − ie−iλ − λ

[∫ 1

λ

(e−ix − 1)

x
dx+

∫ ∞

1

e−ix

x
dx

]

and by taking the complex conjugate of a suitable function, or otherwise,
find a similar identity valid for λ ∈ (−1, 0).

(iv) Deduce that there exist smooth functions f± ∈ C∞(R±) such that

û(λ) + log |λ| = f±(λ) ± λ > 0.

(v) Show that
lim
λ↓0

[f+(λ)− f−(−λ)] = −iπ.

[You may assume
∫∞
0 (sinx/x) dx = π

2 .]

(vi) Suppose that w ∈ C(R) and |w(x) − c±/x| ≲ 1/x2 as x → ±∞ for two
constants c±. Show that the limits

lim
λ↓0

(ŵ(λ) + (c+ − c−) log |λ|) , lim
λ↑0

(ŵ(λ) + (c+ − c−) log |λ|)

exist and compute their difference.

[Hint: if u is the distribution considered in parts (i)-(v) consider

w(x)−
[
αu(x) + β u(−x)

]

for some constants α, β. ]
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2 Define the space of test functions D(Rn) and the space of distributions D′(Rn),
defining the notion of convergence on each. Your definition of D′(Rn) should involve a
semi-norm estimate.

Show that a linear form u : D(Rn) → C defines an element of D′(Rn) if and only if
⟨u, φm⟩ → 0 for each sequence of test functions {φm}m⩾1 that converge to zero in D(Rn).

Let h ∈ Rn and α be a multi-index. For u ∈ D′(Rn) define translation u 7→ τhu
and differentiation u 7→ Dαu.

Let ei denote the unit vector along the ith coordinate axis. Show that for
u ∈ D′(Rn), τteiu = u for all t ∈ R if and only if ∂u/∂xi = 0 in D′(Rn).

For f, g ∈ L1
loc(R) define the distribution u ∈ D′(R2) by the function

u(x, y) = f(x− y) + g(x+ y).

Show that uxx − uyy = 0 in D′(R2).

3 (a) Let X ⊂ Rn be open. What does it mean for Φ : X ×Rk → R to be a phase
function? Define the space Sym(X,Rk;N) and show that:

(i) If a ∈ Sym(X,Rk;N) then Dα
xD

β
θ a ∈ Sym(X,Rk;N − |β|).

(ii) If ai ∈ Sym(X,Rk;Ni) for i = 1, 2 then a1a2 ∈ Sym(X,Rk;N1 +N2).

(iii) If b ∈ C∞(X × Rk) is positively homogeneous of degree M in θ for |θ|
sufficiently large, then b ∈ Sym(X,Rk;M).

For Φ a phase function and a ∈ Sym(X,Rk;N) define

IΦ(a) =

∫
eiΦ(x,θ)a(x, θ) dθ

in terms of a linear map from D(X) to C and show that IΦ(a) ∈ D′(X).

(b) If (x, θ) ∈ R×R, show that

∫
eix

√
θ2+1 dθ

defines an element of D′(R).

[ You may assume that for θ > 2 and α, β = 0, 1, 2, . . .

∣∣∣∣D
β
θ

(
1√

θ2 + 1 + θ

)α∣∣∣∣ ≲α,β ⟨θ⟩−β .]
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