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Let G = (g) be a cyclic group of order N, generated by the element g. For any
x € @G, the unique n € Zy_ satisfying x = ¢" is called the discrete logarithm of x to
the base g. Let Hy be an N-dimensional state space with standard orthonormal basis
B ={]0),]1),...,|N—1)}. For each « € Zy;, let U(«) denote the associated shift operator
acting on Hy, acting as |3) — |3+ «) for all § € Zy (where + denotes addition in Zy).
Denote by Fy the quantum Fourier transform over Zy, and let w := e2™/N he g primitive
N*'™ root of unity. You may use the identity Z w® = 0 without proof wherever required.

a€ZN

) Define the hidden subgroup problem for G.

(a
(b) Explain what is meant by a shift invariant basis for Hy. Show that the states
|€a) == \;—N Z w™*P|B) for o € Zy form such a basis.
BELN

(c) Let H be a state space with orthonormal basis {|k) : & € G} labeled by the
elements of G. For o € Zy define the state |xo) € H by

1
Xa) = —= Y w*lg”) .
qu:ﬁézN

For z,y € G and a € Zy, define the “division operator” D, over Hy ® H by

Drlajly) = le)lyz=),

where 2~ ¢ is the inverse of z% in G.

(i) Show that D, is unitary.
(ii) Show that |a)|xs) is an eigenvector of D, and compute its eigenvalue.

(iii) Compute the output state on applying the operator (F]]:, ® I)D,(Fn ® I) to the
state |a)|x3)-

(iv) Given an element x € G as input, explain how you can use the result of part (iii)
above to find the discrete logarithm of x to the base g. You may assume the ability
to implement D, and Fy efficiently, and to prepare the state |xg) for any 3 of your
choice.
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(a) Let H be a finite dimensional Hilbert space, and let G C H be a linear subspace.
Let [¢p) € H be any normalised state. Define the necessary reflection operators, and in
terms of these state the Amplitude Amplification Theorem as it applies to G and |¢).

(b) Suppose we are given an m-qubit unitary U that performs the map

Ul0™) = v/plg1)[1) + /1 = plvo)[0),

where [10) and [¢)1) are arbitrary normalised (m—1)-qubit states and p € (0, 1) is unknown.
Let S be the 2-dimensional subspace spanned by |1)[0) and |¢1)|1).

(i) Compute the action of the operator I,,—1 ® Z (where I,_; is the (m — 1)-qubit
identity operator and Z is the single qubit Pauli Z gate) in S and show that it
reflects in the hyperplane orthogonal to [i1)[1).

(i) Let Ry = I,, — 2|0™)(0™|. Show that in S, the unitary URyUT is a reflection in
the hyperplane orthogonal to U|0™). [Hint: It may help to extend U|0™) to an
orthonormal basis for S.]

(iii) Show that in S, the unitary URoUT - (I,,_1 ® Z) is a rotation. What is the relation
between the angle of rotation and p?

(iv) Suppose the value of p is known and it is greater than 1/4. Explain how the state
|1)1) can be prepared exactly using the rotation in part (iii) above. You may use
ancillary qubits, and assume the ability to prepare arbitrary single qubit states.
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Denote the standard single-qubit Pauli operators by I, X, Y, Z. For any single-qubit
operator P let P; denote the n-qubit operator that acts as P on the 4 qubit and as the
identity on all other qubits. Let Jx and Jz be the n-qubit operators defined as

n n
1
Jx = E X, Jz= 3 g ZiZ;.
i=1 i,j=1

i#]

(a) Define the spectral norm ||O|| of an operator O. Show that ||Jx| < n.

(b) Show that quantum evolution for time ¢ > 0 under the Hamiltonian Jx can be
implemented exactly using a circuit of only 3n elementary gates. You may assume access
to a two-qubit universal gate set consisting of the Hadamard operator H, CNOT, and
phase gates of the form diag(1,e!®) for all o € [0, 27).

(c) Now let J = Jx + Jz. Is J a k-local Hamiltonian for k independent of n?
Explain how to use the second order product formula

¢~iA/2g—iB—iAJ2 _ ~i(A+B) | p

Y
where max{|| 4|, | B||} < A and E is an operator with || E|| = O(A3), to simulate quantum
evolution under the Hamiltonian J for time ¢ > 0 and precision € in spectral norm. You

may use without proof that if |U; — Vi|| < efori=1,...,n, then [|[U,... U =V, ... V1| <
ne. How does the size of the simulating circuit scale with n,¢ and €?
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Suppose we are given an oracle that implements an unknown unitary U on n qubits,

but we do not have an oracle for U or for controlled-U. We are also given an eigenvector
|vg) of U corresponding to the eigenvalue 1, and another arbitrary n-qubit state |b)
as quantum physical states (with their actual identities or classical descriptions being
unknown). We have access to a universal set of quantum gates, and in particular for
j=1,2,... we can implement phase gates of the form

(a)

. 1 0
P(j) = (() e—zm/zj) :

Using ideas from the Harrow-Hassidim-Lloyd (HHL) algorithm, explain how to
prepare the state UT|b) using only poly(n) queries to U. You may assume that
all the eigenvalues of U can be written as \; = > with ¢; = ¢;/2™ for some
m-bit integers 0 < ¢; < 2™, where m = O(logn).

State the conditions required on the vector b for the HHL algorithm to be applicable
to the linear system defined by Uz = b, and to run in time O(poly(n)).

The HHL algorithm uses a single qubit rotation controlled on m qubits, of the
following form. For any m-bit string x, suppose that 0 < 0, < 7/2 is a parameter
that can be efficiently computed classically from z. Then the operator W acts on
m + 1 qubits, implementing the map

W|x)|0) = |z) (cos 0,]0) + sin 6,(1))

for every x € {0,1}™. Assuming that all the required quantities can be represented
in O(m) bits and ignoring any precision issues, show how to implement W as a
circuit of size poly(m) using 1-qubit and 2-qubit gates. You may use ancillary
qubits if necessary.

END OF PAPER

Part III, Paper 32}



