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Let G = ⟨g⟩ be a cyclic group of order N , generated by the element g. For any
x ∈ G, the unique η ∈ ZN−1 satisfying x = gη is called the discrete logarithm of x to
the base g. Let HN be an N -dimensional state space with standard orthonormal basis
B = {|0⟩, |1⟩, . . . , |N−1⟩}. For each α ∈ ZN , let U(α) denote the associated shift operator
acting on HN , acting as |β⟩ 7→ |β + α⟩ for all β ∈ ZN (where + denotes addition in ZN ).
Denote by FN the quantum Fourier transform over ZN , and let ω := e2πi/N be a primitive

N th root of unity. You may use the identity
∑

α∈ZN

ωα = 0 without proof wherever required.

(a) Define the hidden subgroup problem for G.

(b) Explain what is meant by a shift invariant basis for HN . Show that the states

|ξα⟩ := 1√
N

∑

β∈ZN

ω−αβ|β⟩ for α ∈ ZN form such a basis.

(c) Let H be a state space with orthonormal basis {|k⟩ : k ∈ G} labeled by the
elements of G. For α ∈ ZN define the state |χα⟩ ∈ H by

|χα⟩ :=
1√
N

∑

β∈ZN

ωαβ|gβ⟩ .

For x, y ∈ G and α ∈ ZN , define the “division operator” Dx over HN ⊗H by

Dx|α⟩|y⟩ = |α⟩|yx−α⟩,

where x−α is the inverse of xα in G.

(i) Show that Dx is unitary.

(ii) Show that |α⟩|χβ⟩ is an eigenvector of Dx and compute its eigenvalue.

(iii) Compute the output state on applying the operator (F †
N ⊗ I)Dx(FN ⊗ I) to the

state |α⟩|χβ⟩.

(iv) Given an element x ∈ G as input, explain how you can use the result of part (iii)
above to find the discrete logarithm of x to the base g. You may assume the ability
to implement Dx and FN efficiently, and to prepare the state |χβ⟩ for any β of your
choice.
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(a) Let H be a finite dimensional Hilbert space, and let G ⊆ H be a linear subspace.
Let |ψ⟩ ∈ H be any normalised state. Define the necessary reflection operators, and in
terms of these state the Amplitude Amplification Theorem as it applies to G and |ψ⟩.

(b) Suppose we are given an m-qubit unitary U that performs the map

U |0m⟩ = √
p|ψ1⟩|1⟩+

√
1− p|ψ0⟩|0⟩,

where |ψ0⟩ and |ψ1⟩ are arbitrary normalised (m−1)-qubit states and p ∈ (0, 1) is unknown.
Let S be the 2-dimensional subspace spanned by |ψ0⟩|0⟩ and |ψ1⟩|1⟩.

(i) Compute the action of the operator Im−1 ⊗ Z (where Im−1 is the (m − 1)-qubit
identity operator and Z is the single qubit Pauli Z gate) in S and show that it
reflects in the hyperplane orthogonal to |ψ1⟩|1⟩.

(ii) Let R0 = Im − 2|0m⟩⟨0m|. Show that in S, the unitary UR0U
† is a reflection in

the hyperplane orthogonal to U |0m⟩. [Hint: It may help to extend U |0m⟩ to an
orthonormal basis for S.]

(iii) Show that in S, the unitary UR0U
† · (Im−1 ⊗Z) is a rotation. What is the relation

between the angle of rotation and p?

(iv) Suppose the value of p is known and it is greater than 1/4. Explain how the state
|ψ1⟩ can be prepared exactly using the rotation in part (iii) above. You may use
ancillary qubits, and assume the ability to prepare arbitrary single qubit states.
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Denote the standard single-qubit Pauli operators by I,X, Y, Z. For any single-qubit
operator P let Pj denote the n-qubit operator that acts as P on the jth qubit and as the
identity on all other qubits. Let JX and JZ be the n-qubit operators defined as

JX =
n∑

i=1

Xi, JZ =
1

2

n∑

i,j=1
i ̸=j

ZiZj .

(a) Define the spectral norm ∥O∥ of an operator O. Show that ∥JX∥ ⩽ n.

(b) Show that quantum evolution for time t > 0 under the Hamiltonian JX can be
implemented exactly using a circuit of only 3n elementary gates. You may assume access
to a two-qubit universal gate set consisting of the Hadamard operator H, CNOT, and
phase gates of the form diag(1, eiα) for all α ∈ [0, 2π).

(c) Now let J = JX + JZ . Is J a k-local Hamiltonian for k independent of n?
Explain how to use the second order product formula

e−iA/2e−iBe−iA/2 = e−i(A+B) + E,

where max{∥A∥ , ∥B∥} ⩽ Λ and E is an operator with ∥E∥ = O(Λ3), to simulate quantum
evolution under the Hamiltonian J for time t > 0 and precision ϵ in spectral norm. You
may use without proof that if ∥Ui − Vi∥ ⩽ ϵ for i = 1, . . . , n, then ∥Un . . . U1 − Vn . . . V1∥ ⩽
nϵ. How does the size of the simulating circuit scale with n, t and ϵ?
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Suppose we are given an oracle that implements an unknown unitary U on n qubits,
but we do not have an oracle for U † or for controlled-U . We are also given an eigenvector
|v0⟩ of U corresponding to the eigenvalue 1, and another arbitrary n-qubit state |b⟩
as quantum physical states (with their actual identities or classical descriptions being
unknown). We have access to a universal set of quantum gates, and in particular for
j = 1, 2, . . . we can implement phase gates of the form

P (j) =

(
1 0

0 e−2πi/2j

)
.

(a) Using ideas from the Harrow-Hassidim-Lloyd (HHL) algorithm, explain how to
prepare the state U †|b⟩ using only poly(n) queries to U . You may assume that
all the eigenvalues of U can be written as λj = e2πiϕj with ϕj = cj/2

m for some
m-bit integers 0 ⩽ cj < 2m, where m = O(log n).

(b) State the conditions required on the vector b for the HHL algorithm to be applicable
to the linear system defined by Ux = b, and to run in time O(poly(n)).

(c) The HHL algorithm uses a single qubit rotation controlled on m qubits, of the
following form. For any m-bit string x, suppose that 0 ⩽ θx ⩽ π/2 is a parameter
that can be efficiently computed classically from x. Then the operator W acts on
m+ 1 qubits, implementing the map

W |x⟩|0⟩ = |x⟩ (cos θx|0⟩+ sin θx|1⟩)

for every x ∈ {0, 1}m. Assuming that all the required quantities can be represented
in O(m) bits and ignoring any precision issues, show how to implement W as a
circuit of size poly(m) using 1-qubit and 2-qubit gates. You may use ancillary
qubits if necessary.
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