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1 Viscous and magnetic accretion
An axisymmetric viscous accretion disc is threaded by a large-scale magnetic field

B anchored in the surrounding interstellar medium (taken to be at infinity). In cylindrical
coordinates, the disc’s evolution is governed by

∂tρ+
1

r
∂r(rρur) + ∂z(ρuz) = 0,

ρ

[
∂tuϕ +

1

r
ur∂r(ruϕ) + uz∂zuϕ

]
=

1

r2
∂r(r

2Πrϕ) + ∂zΠϕz +
1

r2
∂r

(
r2

BrBϕ

4π

)
+ ∂z

(
BϕBz

4π

)
,

where Π is the viscous stress and the other symbols take their usual meanings.

(a) Assume that ρu, Π, and Br go to zero as |z| → ∞, but that BϕBz is non-zero at
infinity. You may also take uϕ = rΩ(r). Hence derive the following 1D advection-
diffusion equation:

∂tΣ =
1

2πr
∂r

[(
dr

dh

)
(∂rG − rT )

]
,

where Σ is surface density, h is specific angular momentum, G is the total internal
viscous-magnetic torque, and T is the total magnetic torque at |z| → ∞, expressions
for which you must provide.

(b) Let G = 0 and set T = 2πvm(dh/dr)Σ, where vm is a negative drift speed, potentially
a function of the other variables.

(i) If the disc is receiving mass at its outer edge at a rate Ṁ , find the expression
that Σ(r) must satisfy for the disc to be in steady state.

(ii) Consider the special case that vm is a constant. At time t = 0, Σ = Σ0(r), where
Σ0(r) describes an initial state localised to r = r0. By considering the mass per
unit radius M = 2πrΣ, or otherwise, qualitatively describe the disc’s evolution
and estimate the time it takes for the disc to accrete onto the central star (taken
to be at r = 0). Explain the evolution of the system’s angular momentum.

(iii) Suppose that vm = vm(M), with |d(Mvm)/dM | an increasing function of M .
Via a diagram or otherwise, qualitatively describe the evolution of a localised
initial condition.

(c) Assume now that G = 3πhνΣ, T = 2πβr−1/2(dh/dr)Σ, with ν and β constants
(β ⩽ 0), and that the disc is Keplerian. Suppose it is in steady state, receiving mass
at a rate Ṁ at its outer edge, and G = 0 at its inner edge r = rin.

(i) When β = 0, find the steady state profile of νΣ(r).

(ii) When β ̸= 0, show that

νΣ =
Ṁ

3πλ
x−1/2 [1− exp(λf(x))] , (†)

where λ = −2β
√
rin/(3ν), x = r/rin, and f(x) is a function you need to find.

(iii) Show that, in two distinct limits of λ, (†) agrees with your answers to part (b)(i)
and part (c)(i). Estimate the radii where T dominates in (†). At which radii
does G dominate?
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2 The radial drift of dust and the streaming instability

(a) A non-turbulent gaseous disc is in a steady axisymmetric state, orbiting a star of mass
M⋆ with orbital frequency Ω. It satisfies hydrostatic balance:

−rΩ2er = −1

ρ
∇P −∇Φ,

where ρ and P are the disc’s density and pressure, Φ = −GM⋆/
√
r2 + z2, and

cylindrical coordinates are employed, with ∇f = er∂rf + ez∂zf for any axisymmetric
function f . You may assume the disc is thin.

(i) By expanding Φ, obtain an order of magnitude estimate for the disc semi-
thickness H in terms of the sound speed and Ω.

(ii) Suppose the disc is composed of a perfect gas with entropy s = ln(ρ−γP ) (in
suitable units) and adiabatic index γ ( ̸= 1). If s = s(r), show that

ρ = ρ0(r)

(
1− z2

H(r)2

)m

,

where ρ0 is the midplane density, and you need to find expressions for H and m.

(iii) If the midplane pressure is a decreasing function of r, show that the midplane
rotation is sub-Keplerian with relative difference in orbital frequency ∼ (H/r)2.

(b) The gaseous disc is permeated with dust, which may be treated as a pressure-less fluid
of test particles. The dust can be described with a shearing sheet located at radius
r0, moving at the local Keplerian frequency ΩK . Its governing equations are

∂tσ + u · ∇σ = −σ∇ · u, ∂tu+ u · ∇u = −2ΩKez × u+ 3Ω2
Kxex −

1

τ
(u− v),

where σ and u are the dust density and velocity, τ is a constant, and v the gas velocity.

(i) In the shearing sheet, the background gas equilibrium of part (a) may be
represented as v = v0 = [V − (3/2)ΩKx]ey, where V is a constant. Explain
the origin and sign of V .

(ii) Calculate the dust equilibrium, σ = σ0, u = u0 = −(3/2)ΩKxey + ∆u, where
σ0 is a given constant and ∆u is a constant vector you need to find. Give a
physical explanation for why the dust drifts radially. Show that this radial drift
is maximised when τΩK = 1.

(c) Suppose an axisymmetric wave is travelling through the gas described in part (b), so
that v = v0 + v1e

ik·x−iωt, where v1 is constant, k = kxex + kzez is a real wavevector,
and ω is the real wave frequency. The gas wave causes a small perturbation to the
dust equilibrium of part (b), so that σ = σ0 + σ′(t)eik·x, and u = u0 + u′(t)eik·x.

(i) Write down the linearised equations governing the small amplitudes σ′(t) and
u′(t), in terms of the operators D = ∂t + i(k · ∆u) and Dτ = D + 1/τ . Hence
show that

Dτ (D2
τ +Ω2

K)Dσ′ = F e−iωt,

where F is a constant you need not evaluate.

(ii) Show that |σ′| undergoes algebraic growth in time when a certain condition is
satisfied, which you should state.
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3 Vortensity in the shearing sheet
The equations governing non-self-gravitating isothermal gas in a shearing sheet

model of a razor thin disc are

DtΣ = −Σ∇ · u, Dtu = −2Ω ez × u− 1

Σ
∇P −∇Φt,

where Dt = ∂t+u·∇, Σ is surface density, u is velocity, Φt = −3
2Ω

2x2 is the tidal potential,
Ω is the orbital frequency of the sheet, and P = c2sΣ is the pressure, with cs a constant.

(a) The vortensity is defined to be ζ = Σ−1[2Ω + (∇× u) · ez]. Show that Dtζ = 0.

[You may need the vector identities:

a · ∇a = (∇× a)× a+ 1
2∇|a|2, ∇× (a×b) = b · ∇a− a · ∇b+ a∇ ·b−b∇ · a. ]

(b) Suppose the disc is in a steady axisymmetric equilibrium whereby ux = 0, uy = uy(x),
and Σ = Σ0 exp[σ(x)], where Σ0 is a constant, and the dimensionless function σ goes
to 0 as |x| → ∞.

(i) Write down the relation σ and uy must satisfy for equilibrium to hold.

(ii) If ζ = ζ(x) is known, show that σ must satisfy the following ODE

d2σ

dξ2
− qeσ + 1 = 0, (†)

where ξ = (Ω/cs)x, and q = [2Σ0/Ω]ζ.

(iii) Assume that σ is small, so that (†) may be linearised in σ, and that

q =

{
1, for |ξ| > d,

0, for |ξ| < d,

where d is a constant. Hence solve (†) for σ and provide a rough plot of Σ.

(c) Perturb the equilibrium Σ = Σ0, u = −3
2Ωx ey with small disturbances Σ′ and u′.

(i) Write down the components of the linearised, perturbed equation of motion.

(ii) Assume the perturbations are of the form

u′ = ũ(t) exp[ikx(t)x+ ikyy], Σ′ = Σ̃(t) exp[ikx(t)x+ ikyy],

where kx is a time-dependent wavenumber and ky is constant.

Find and solve the equation kx must satisfy for the perturbation equations to be
consistent. Describe the evolution of the perturbation’s morphology.

(iii) The linearised vortensity perturbation is ζ ′ = ζ̃(t)exp[ikx(t)x+ ikyy]. Show that

ζ̃ is a constant. By setting ζ̃ = 0, express Σ̃ in terms of the components of ũ.

Hence obtain
dũ

dt
= A(t)ũ, (⋆)

where A(t) is a matrix function you need to determine.

(iv) Set ky = 0 and solve (⋆), writing down the resulting dispersion relation. What
type of disturbance does it describe?
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