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(i) Briefly describe why, for a homologous set of stars of radius R and mass M , we
expect Pc ∝ Mρc/R, where Pc and ρc are the central pressure and density. A homologous
set of fully radiative stars of uniform composition have opacity obeying Kramers’ law
κ = κ0ρT

−3.5 and generate energy via the pp-chain at a rate given by ϵ = ϵ0ρT
3.5, where

κ0 and ϵ0 are constants and ρ and T are density and temperature which are related to
pressure P by an ideal gas equation of state. Show that the luminosity L and radius R of
these stars depend on mass M according to

L ∝ M11/2

and
R = const.

Explain why such a set of stars is a useful representation of the lower main sequence
including the Sun.

(ii) Given that the Sun has a central temperature of 1.5× 107K and that the CNO-
cycle dominates the pp-chain above 2× 107K in solar composition material, estimate the
maximum mass represented by the above homologous series. Above this mass the energy
generation rate obeys ϵ = ϵ0ρT

11.5. In all other respects the stars are similar to the
homologous series described above. Obtain relations between L and R, and M for such
stars.

Sketch the two sequences in a Hertzsprung–Russell diagram.

How does the energy generation rate depend on composition for the pp-chain and
the CNO-cycle?

(iii) Another set of stars, formed in a different environment, have the same mass
fraction of hydrogen but a mass fraction of CNO elements 256 times smaller than the Sun.
Assuming any changes in opacity and mean molecular weight are negligible, estimate the
temperature at which the CNO-cycle dominates in these stars and the corresponding mass
at which this occurs.

Sketch, on the same Hertzsprung-Russell diagram as the solar composition stars,
the two sequences for these stars.
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2 (i) In a plane-parallel grey atmosphere of negligible mass and without any source
of energy the optical depth τ is defined by dτ = −κρdz, where κ(ρ, T ) is the opacity of
stellar material of density ρ at temperature T , z is the height in the atmosphere and τ → 0
at large z. The equation of radiative transfer can be written as

cos θ
dI

dτ
= I − j

κ
, (∗)

where I(τ, θ) is the intensity of radiation at optical depth τ at an angle θ to the z-axis
and j, the effective emissivity, is isotropic and so given by

j

κ
=

σT 4

π
,

where σ is the Stefan–Boltzmann constant. Integrate (∗) over a sphere to deduce that

4π
j

κ
=

∫

sphere
I(τ, θ) dΩ = 4πJ,

where J(τ) is the mean intensity.

(ii) Show that an intensity of the form

I(τ, θ) = A(τ) + C(τ) cos θ

satisfies the Eddington closure approximation

cPr =
4

3
πJ

between radiation pressure Pr(τ), the speed of light c and J , and is a solution to (∗) if
dA

dτ
= C and C =

3F

4π
,

where F is the radiation flux.

Find A(τ) and use the definition of effective temperature Te to deduce that

T 4 =
3

4
T 4
e

(
τ +

2

3

)
,

and that when τ = 0, T = T0 = 2−1/4Te.

(iii) In the atmosphere of a red dwarf the opacity obeys

κ = κ0P
α−1T 4−4β

and radiation pressure is negligible. Show that the pressure P varies with temperature as

Pα =
2αg

3κ0βT 4
0

(
T 4β − T 4β

0

)
,

where g is the surface gravity of the star.

Deduce that an appropriate surface boundary condition, for the stellar interior, is

Pκ

g
=

4α

3β

(
1− 2−β

)
,

where the local luminosity Lr = 4πσr2T 4.
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(i) A white dwarf has a helium core mass M , radius R and a thin hydrogen-rich,
non-degenerate envelope, that behaves as a perfect gas and in which radiation pressure
may be neglected, of mass Menv ≪ M and thickness H ≪ R. With z = r −R, where r is
the distance from the centre of the white dwarf, the surface density Σ(z) in the envelope
satisfies dΣ = −ρdz with Σ = 0 at z = H and Σ = Σ0 = Menv/4πR

2 at z = 0. Show that,
to a good approximation, in the envelope the pressure P = Σg where g = GM/R2.

Show that approximate equations for the structure of the envelope are

dF

dΣ
= −ϵ and

dT

dΣ
=

3κF

4acT 3
,

where F = Lr/4πR
2, Lr is the outward luminosity through a sphere of radius r, T (r) is

the temperature, ϵ is the specific energy generation rate, κ is the opacity, a is the radiation
constant and c is the speed of light.

(ii) The opacity is of the form κ = κ0ρT
−2 and κ0 is a constant. The white dwarf’s

luminosity is produced solely by hydrogen burning in the envelope. The hydrogen burns
steadily, with ϵ = ϵ0ρT

15 and ϵ0 is a constant. Set y = T 7 and x = 1
2Σ

2 and deduce that
the structure equations can be written in the form

d2y

dx2
= −ω2y2,

where ω2 is a positive constant, that need not be found explicitly.

Show that appropriate boundary conditions at x = 0 are

y = 0 and
dy

dx
=

AL

4πR2
,

where A is a constant, that need not be found explicitly, and at x = 1
2Σ

2
0

y = T 7
0 and

dy

dx
= 0.

(iii) Integrate once to find that the temperature at the base of the envelope satisfies

T0 ∝
(

L

4πR2

)2/21

.

Integrate again, noting that

∫ 1

0

dη√
1− η3

is a constant to deduce that
L

4πR2
∝

(
Menv

4πR2

)−6

.

Briefly comment on the stability of hydrogen burning in this white dwarf envelope.
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(i) A close binary star has a circular orbit with angular velocity Ω and semi-major
axis a. Star 2 behaves as a point mass while star 1 is extended, has a spin aligned with the
orbital angular momentum and synchronized with the orbit. Star 1 is centrally condensed
and of uniform composition. In a rotating frame in which the binary system is stationary
let star 1 be at the origin and star 2 at aaa. Show that surfaces of constant pressure P and
density ρ are surfaces of constant potential

Ψ = −GM1

|rrr| − GM2

|rrr − aaa| −
GM

2a3
s2,

where M = M1 + M2, a = |aaa| and s is the perpendicular distance to the rotation axis
through the centre of mass of the system.

(ii) What is meant by the Roche lobe of star 1?

When star 1 is much smaller than its Roche lobe, interior equipotential surfaces S
are approximately spherical and of radius r. Deduce that the mean effective gravitational
acceleration within star 1 is

⟨g⟩ = 1

S

∫

S
g.dSg.dSg.dS ≈ −GM1

r2
+

2

3
Ω2r,

where ggg = −∇Ψ.

(iii) When the size of star 1 approaches that of its Roche lobe a better one-
dimensional approximation for the equations of stellar structure can be constructed
by considering Ψ as independent variable. Let V (Ψ) be the volume enclosed by the
equipotential surface S(Ψ) and define an artificial radius r′ such that V (Ψ) = (4/3)πr′3.
Show that we can write the mass equation as

dm

dr′
= 4πr′2ρ

and hydrostatic equilibrium as
dP

dm
= −fP

Gm

4πr′4
,

where

fP =
4πr′4

GmS⟨g−1⟩ and ⟨g−1⟩ = 1

S

∫

S
g−1 dS.

(iv) In radiative equilibrium the local flux

FFF = −4acT 3

3κρ
∇T,

where a is the radiation constant, c the speed of light, T (Ψ) the temperature and κ the
opacity. Show that the luminosity through an equipotential surface is

LΨ = −4acT 3

3κ
S2⟨g⟩⟨g−1⟩ dT

dm
.

(v) Briefly describe why this formalism breaks down when star 1 overfills its Roche
lobe.
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