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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+∇ · (ρu) = 0,

∂p

∂t
+ u · ∇p+ γp∇ · u = 0, (1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −ρ∇Φ−∇p+

1

4π
(∇×B)×B, (2)

∂B

∂t
= ∇× (u×B) , ∇2Φ = 4πGρ. (3)

Conservation laws for momentum and energy

∂(ρu)

∂t
+∇ · Π̂ = 0, Π̂ij = ρuiuj +
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8π
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δij −
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2
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)
+ c

E×B

4π

]
= 0, (5)

where h is the enthalpy obeying dh = T ds + ρ−1dp; h = c2s/(γ − 1) for a polytropic gas
with adiabatic index γ, where cs is the speed of sound.

You may assume that for any scalar function f

∇f =
∂f

∂R
eR +

1

R

∂f

∂ϕ
eϕ +

∂f

∂z
ez (cylindrical coordinates) (6)

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂ϕ
eϕ (spherical coordinates). (7)

You may assume that for any vector C in cylindrical polar coordinates

∇ ·C =
1

R

∂(RCR)

∂R
+

1

R

∂Cϕ

∂ϕ
+

∂Cz

∂z
, (8)
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R

∂Cz

∂ϕ
− ∂Cϕ

∂z
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and in spherical polar coordinates
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1

r2
∂(r2Cr)

∂r
+

1

r sin θ
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∂θ
+

1

r sin θ

∂Cϕ

∂ϕ
, (10)

∇×C =
1

r sin θ

(
∂(Cϕ sin θ)

∂θ
− ∂Cθ

∂ϕ

)
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1

r

(
1

sin θ

∂Cr

∂ϕ
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∂r

)
eθ

+
1

r

(
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∂r
− ∂Cr

∂θ

)
eϕ. (11)

You may refer to these formulae in your solutions, but, please, make sure to provide
sufficient details when using them.
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(a) Define what it means for a magnetostatic structure to be in force-free equilibrium.
Show that the magnetic field structure in a force-free equilibrium is governed by the
equation

∇×B =
4π

c
αB,

where α is a function of the spatial coordinates and c is the speed of light. Identify a
constraint on α(r).

(b) Consider an axisymmetric magnetostatic configuration with properties depending on
R only in cylindrical coordinates r = (R,ϕ, z). Assume that the radial component BR of
B vanishes as R → 0. Derive a closed form equation for the z-component of the magnetic
field for general α(R).

(c) Now assume a particular form for α(R), namely

α(R) =
c

4π

κ

R
,

where κ > 0 is a constant. Solve for the magnetic field (all components) not applying any
boundary conditions. Show that for κ > κc, where κc is to be determined, the magnetic
field exhibits an oscillatory radial dependence.

(d) Now consider the case of κ = κc. Find the general solution for Bz and demonstrate
that the magnetic field lines make a constant angle with the z-axis as R → ∞. Find this
angle.
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Consider the steady, hydrodynamic, transonic accretion of gas onto a point mass M . The
accretion flow is spherically symmetric and obeys a globally isothermal equation of state
p = c2s ρ, where p is pressure, ρ is density and cs is the spatially constant sound speed. Far
from the point mass (as r → ∞) the gas is at rest and its density is ρ0.

(a) Use the equations of motion and continuity to show that this accretion flow admits
a sonic point at which the radial velocity of the flow u equals cs. Find the radius of the
sonic point rs, assuming that the flow smoothly passes from subsonic to supersonic there.

(b) Using the equation of motion, or otherwise, demonstrate that

B =
u2

2
+ c2s ln ρ+Φ

is constant along the stream lines, where Φ is the gravitational potential of the point mass.

(c) Show that the mass accretion rate onto the point mass is

Ṁ = Aρ0
(GM)2

c3s
,

where A is the constant that you need to determine.

(d) Integrate the equations of motion and continuity, with the appropriate boundary
conditions, to derive an algebraic, transcendental relation between y = u/cs and x = r/rs
that does not contain any arbitrary constants or dimensional parameters.

(e) Using the relation obtained in part (d), or otherwise, determine the leading order
expression for u(r) assuming r ≪ rs and the next order correction for its expansion in
terms of r/rs ≪ 1.
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A spacecraft in the shape of a thin, rectangular wing is moving through magnetised plasma.
The wing lies in the x− y plane of the Cartesian coordinate system (x, y, z), and its long
side is parallel to the y-axis. The wing can be considered as infinitely thin in the z-direction
and infinitely extended in the y-direction; it has a constant width L in the x-direction.
The velocity of the wing is u0 = u0ex. Due to its thinness, the wing experiences no
aerodynamic drag as a result of its motion through the plasma.

Far ahead of the wing, plasma has an unperturbed density ρ0 and is threaded by an
unperturbed uniform magnetic field B0 = B0ez. The gas has zero pressure, and there is
no gravity.

The wing has a finite, constant surface conductivity Σ (i.e. the volumetric conductivity
σ integrated over the small thickness of the wing in the z-direction), which is so low that
the magnetic field penetrates into the wing with no significant distortion of its structure.

(a) Because of the non-zero conductivity of the wing, a current is driven through it. The
surface current J (i.e. the current density j inside the wing integrated over its small
thickness) obeys Ohm’s law J = ΣE, where E is the electric field in the frame of the
wing. Explain the origin of this current and determine the value and orientation of J .

(b) Current running through the wing causes a perturbation in the surrounding plasma.
Argue that this perturbation is stationary in the frame co-moving with the wing. As-
suming the perturbations of the fluid variables are small compared to their background
values, linearize the MHD equations and derive the following equation for the velocity
perturbation δux in the x-direction

(u2A − u20)
∂2δux
∂x2

+ u2A
∂2δux
∂z2

= 0, (1)

where uA is the unperturbed Alfven velocity.

(c) Use Maxwell’s equation in the form ∇×B = (4π/c)j to find the jump in δBx caused
by the current through the wing, where δBx is the x-component of the magnetic field
perturbation. Use this result to determine the boundary condition for δBx at the upper
and lower surfaces of the wing.

(d) Consider the limit of a super-Alfvenic velocity, u0 ≫ uA. Use equation (1) and the
boundary condition from part (c) to derive the solution for the perturbations of velocity
and magnetic field in the plasma. Show that these perturbations can be non-zero only
within a particular volume of space, the shape of which you must determine.
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A supernova explosion drives a strong, spherically symmetric shock wave into the sur-
rounding interstellar medium, which is at rest. The velocity of (shocked) gas inside the
spherical shock behaves as a function of radius r and time t as

u(r, t) = u0(t)
r

R(t)
, r < R(t),

where R(t) is the radius of the shock and u0(t) is the post-shock gas velocity, i.e.
u0(t) = u(R(t), t). The gas into which the shock propagates is cold (its thermal energy
can be neglected) and has a constant density ρ0; the adiabatic index of the gas is γ = 5/3.

(a) Use the velocity structure inside the shock to justify briefly whether or not you expect
the evolution of the supernova remnant to be adiabatic.

(b) State (or derive) the post-shock values of the gas density ρ(R(t), t) and velocity u0(t),
assuming the shock to be strong and passage of the gas through the shock front to be
adiabatic.

(c) Suppose now that the medium into which the shock propagates is pervaded by a
uniform magnetic field B0, which is too weak to affect the fluid motion. Working in a
spherical coordinate system (r, θ, ϕ) with the θ = 0 axis aligned with B0, write down the
post-shock magnetic field B(R(t), θ, t) in spherical coordinates.

(d) Use the relevant MHD equations, the self-similarity of the u(r, t) profile and the results
of part (c) to determine the structure of the magnetic field B(r, θ, t) inside the shock.
Sketch the shape of the magnetic field lines inside and outside the shock.

END OF PAPER
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