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(a) From the continuity equation for the energy density, determine the scaling of the
energy density ρ with scale factor a for a component with constant equation of state
parameter w. Hence show that the Hubble parameter can be written as

H(z) = H0

[∑

i

Ωi,0(1 + z)3(1+wi)

]1/2

, (1)

where the sum is over components i with constant equation of state parameters wi and
where you should define Ωi,0.

(b) Now consider a universe containing only matter (m) and a non-standard dark energy
component (DE); the non-standard dark energy component has an equation of state
parameter w(z) that is not constant, but instead depends on redshift. Show that in
such a universe the Hubble parameter is given by

H(z) = H0

[
Ωm,0(1 + z)3 +ΩDE,0(1 + z)3 exp (

∫ z

0

w(z′)
X(z′)

dz′)
]1/2

, (2)

where X(z) is a function you should specify.

(c) The flux F received from a supernova with a luminosity L is given by F = L
(1+z)24πχ2(z)

,

where χ(z) is the comoving distance to the supernova (which has a redshift z). You may
assume that the supernova luminosity takes the same constant value for all supernovae.
Hence explain carefully how measurements of supernovae can be used to constrain the
equation of state of dark energy w(z). Does the value of L need to be known for w(z) to
be constrained?

(d) A certain population of galaxies forms at a known, fixed cosmic time. Assume that
from our knowledge of galaxy evolution as well as spectroscopic information, we can
determine the age of each of the observed galaxies when their light was emitted. Derive a
relation between the difference in redshift ∆z and difference in age ∆t of a pair of galaxies
and the Hubble parameter H(z) (you may assume that ∆z ≪ 1), and hence explain how
measurements of galaxy ages at different redshifts can be used to constrain the equation
of state of dark energy w(z). Why could this probe be more sensitive to rapid, oscillatory
variations in w(z) with redshift than supernova measurements?
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(a) Explain in detail why the temperature Tν of the cosmic neutrino background is related
to the CMB photon temperature T today by

Tν

T
=

(
4

11

)1/3

. (1)

In your explanation, you may assume without proof that the entropy S = ρ+P
T V is

conserved in an expanding universe.

(b) Deduce that the energy density in radiation is given by

ρr =
π2

30

[
2 +

7

8
× 2×

(
4

11

)4/3

×Neff

]
T 4, (2)

where Neff is the (effective) number of neutrino species. In deriving this expression, you
may assume relativistic standard model neutrinos.
[Hint: you may assume the standard expression for the energy density of a relativistic

particle, ρ = π2

30 gCT 4, where g is the number of spin degrees of freedom and where C = 1
for bosons and C = 7/8 for fermions. You may also neglect any influence of electron
positron annihilation on the decoupled neutrinos.]

(c) Now consider a relativistic scalar particle that, while initially in equilibrium with the
photons and other coupled particles, decouples at a higher temperature Td than a standard
model neutrino. Derive an expression for the additional contribution to Neff produced
by this particle as a function of the effective number of entropy degrees of freedom for all
other particles g∗S(Td).

(d) A model of new physics is proposed that involves a very large number of additional
particle species. At very high temperatures > 1000 GeV, these particles are all relativistic
and in equilibrium with the standard model. As the temperature begins to fall, only one
of the many new particle species, a light scalar particle, is predicted to decouple from the
thermal bath. At temperatures ≈ 200 GeV and below only the standard model particles
and the new light scalar are present. A measurement of Neff with a precision of 0.1%
is made, and no evidence for departures from the standard model is found at this level
of precision. Can we definitively exclude the proposed new physics model based on this
measurement?
[Hint: you may assume that the maximum g∗S reached at high temperatures (at and above
≈ 200 GeV) in the standard model is g∗S = 106.75.]
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3 This question is concerned with the effect of dark energy on the growth of cosmic
structure on subhorizon scales. You may assume standard dark energy with an equation
of state parameter w = −1 throughout the question.

(a) The perturbed energy momentum conservation and Poisson equations on subhorizon
scales are given by:

δ′m + 3H
(
δPm

δρm
− P̄m

ρ̄m

)
δm = −

(
1 +

P̄m

ρ̄m

)
(∇ · v − 3Φ′), (1)

v′ + 3H
(
1

3
− P̄m

ρ̄m

)
v = − ∇δPm

ρ̄m + P̄m
−∇Φ, (2)

∇2Φ = 4πGa2
∑

i

ρ̄iδi. (3)

Here primes indicate derivatives with respect to conformal time, superscript bars indicate
unperturbed background quantities, the index i labels the components of the universe,
subscript m labels the matter component, H is the conformal Hubble parameter, δi is
the fractional density contrast for component i, Φ gives the standard Newtonian gauge
potential perturbation, v is the matter velocity field, and P and ρ indicate pressure and
energy density, respectively.

From these equations, derive the following expression for the evolution of the matter
fractional density contrast δm during matter domination:

δ̈m + 2Hδ̇m − 4πGρ̄mδm = 0, (4)

where superscript dots indicate derivatives with respect to time. You may assume without
proof that this result is also valid during dark energy domination.

(b) Hence derive how δm evolves with the scale factor a during matter domination and
during dark energy domination.

(c) Now suppose that both dark energy and dark matter are present and not necessarily
negligible (you may assume that radiation can be neglected). Show that in this scenario
we obtain the following evolution equation written in terms of derivatives with respect to
the scale factor a:

d2δm
da2

+

(
d lnH

da
+

3

a

)
dδm
da

− 3Ωm,0H
2
0

2a5H2
δm = 0. (5)

(d) By substituting the variable u = δm/H or otherwise, deduce an expression for the
growth of δm with scale factor (you may leave your expression in terms of an integral).
[Hint: after substitution, you may wish to show that the term proportional to u vanishes.]

(e) Assume that galaxies form from perturbations of a certain characteristic scale when
these density perturbations become of order unity in size (and hence non-linear collapse
takes place.) Assume also that such density perturbations are measured to have an
amplitude δm = A at the time of CMB decoupling, where A is a small constant satisfying
A < 1. Under these assumptions, can the existence of galaxies be used to place an upper
limit on the dark energy density ρΛ? Justify your answer.
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4 Consider a standard single-field slow-roll inflation model, where ϕ is the inflation
field and V (ϕ) is its potential. You may assume throughout this question that a(τ) =

−(Hτ)−1 (with τ the conformal time) and that H =

√
V (ϕ)
3M2

pl
≈ constant.

(a) Canonical quantization leads to the following expression for the field operator f̂ = aδ̂ϕ,
describing perturbations to the inflation field δϕ:

f̂(τ,x) =

∫
d3k

(2π)3

[
fk(τ)â

†
ke

−ik·x + f∗
k(τ)âke

ik·x
]

where f∗
k(τ) = e−ikτ√

2k
(1 − i

kτ ) and âk, â
†
k′ are lowering and raising operators. State the

commutation relations obeyed by âk and â†k′ . By calculating the two point correlation
function of δϕ, deduce the dimensionless power spectrum of δϕ. Evaluate it when k ≪ aH,
and show that the spectrum is given by

∆2
δϕ =

(
H

2π

)2

. (1)

[Hint: you may assume that the dimensionless power spectrum ∆2
δϕ is related to the

two point correlation function via ⟨0|δ̂ϕ(τ,x)δ̂ϕ(τ,x+ r)|0⟩ =
∫

d3k
(2π)3

2π2

k3
∆2

δϕe
−ik·r]

(b) The power spectrum of the comoving curvature perturbation R in this inflation model
is hence given by

∆2
R(k) =

1

2ϵM2
pl

(
H

2π

)2

, (2)

where ϵ ≡ − Ḣ
H2 = (ϕ̇)2

2H2M2
pl

is the Hubble slow-roll parameter. Specify when the right

hand side of this equation is to be evaluated; then show that the scalar spectral index

ns ≡ 1 +
d ln∆2

R
d ln k is given by

ns − 1 = −2ϵ− η, (3)

where η = d ln ϵ
dN is the second Hubble slow roll parameter.

(c) The predicted level of tensor perturbations can also be computed in a manner
analogous to the scalar perturbation case; the result is that the power spectrum of tensor

perturbations is given by ∆2
t (k) = 8

M2
pl

(
H
2π

)2
(with the right hand side evaluated at the

same time as in the scalar result). Show that the tensor spectral index nT ≡ d ln∆2
t

d ln k is
given by nT = −Cϵ, where C is a positive constant you should specify. Hence derive a
relation between the tensor-to-scalar ratio r ≡ ∆2

t (k)/∆
2
R(k) and nT .

(d) Motivated by the fact that tensor modes have not yet been detected in the CMB on
large scales, some researchers have considered whether tensor modes could have a power
spectrum with nT > 0, referred to as a “blue” spectrum. Discuss whether a blue spectrum
of tensor modes can arise from a simple, standard inflation model in which a single field
ϕ rolls slowly down a potential V (ϕ). Discuss also whether such a simple inflation model
can produce a blue spectrum of scalar perturbations (ns − 1 > 0).
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