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1

a) Let (M, g) be a Lorentzian spacetime, and γ : [0, 1] → M a smooth timelike curve
with γ(0) = p, γ(1) = q. Assume we work in a local coordinate system {xµ} such
that γ is mapped to the curve xµ = xµ(s) for 0 ⩽ s ⩽ 1.

i) Write down an expression for the proper time T elapsed along the curve from
p to q.

ii) Show that if γ extremizes T among timelike curves with the same endpoints,
then in local coordinates it must satisfy the geodesic equation

d2xµ

dτ2
+ Γν

µ
σ
dxν

dτ

dxσ

dτ
= 0,

where τ is the proper time along the curve and you should give an expression
for Γν

µ
σ in terms of gµν .

iii) Show that the geodesic equation may also be obtained as the Euler-Lagrange
equation of the action

S[x] =
1

2

∫ T

0
gµν

dxµ

dτ

dxν

dτ
dτ.

b) Now consider the gravitational plane wave solution to the vacuum Einstein equa-
tions:

g = −dt2 + dx2 + dy2 + dz2 + 2xyA(t− z)(dt− dz)2

where A(u) is a smooth function satisfying A(u) = 0 for |u| > U for some U > 0.

i) Sketch in the (t, z)−plane the regions where g is locally isometric to Minkowski
spacetime. Explain briefly why this spacetime represents a pulse of gravita-
tional radiation of length 2U moving in the z−direction.

ii) Using the result of a)iii) above, or otherwise, write down the equations
satisfied by a geodesic of this metric, and show that ṫ(τ) − ż(τ) is constant
along any geodesic.

iii) A test mass falls along the timelike geodesic given for τ < −U by

(t(τ), x(τ), y(τ), z(τ)) = (τ, x0, y0, 0)

Assume that A(u) = ϵa(u) where 0 < ϵ ≪ 1. Find, to first order in ϵ, x(τ)
and y(τ) for all τ and show that for τ > U

x(τ) = x0 + δx+ τδvx

where

δx = −ϵy0

∫ ∞

−∞
ua(u)du, δvx = ϵy0

∫ ∞

−∞
a(u)du

and give a similar expression for y(τ). Show that z(τ) vanishes to first order
in ϵ.
[Hint: You may wish to use the identity

∫ τ
−∞ f(u)du = τf(τ)−

∫ τ
−∞ uf ′(u)du,

valid for f decaying rapidly as x → −∞]

iv) Suppose a satisfies
∫∞
−∞ a(u)du = 0,

∫∞
−∞ ua(u)du > 0. Sketch the position of

a set of test masses initially arranged at rest in a circle around the origin in
the plane {z = 0} before and after the passage of the pulse.
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2 Suppose that (M, g) is a smooth Lorentzian manifold in (1+ 3)-dimensions. Let ∇
be the Levi-Civita connection.

a) Suppose V a is a smooth vector field on M and ωa a smooth covector field. Starting
from the fact that (LXY )a = [X,Y ]a for any vector fields X,Y , and assuming the
Leibniz rule for the Lie derivative, show

(LV ω)a = V b∇bωa + ωb∇aV
b

(LV g)ab = ∇aVb +∇bVa.

[Hint: You may assume the existence of normal coordinates at a point p.]

b) Suppose Fab = −Fba solves the vacuum Maxwell equations:

∇aF
a
b = 0, ∇[aFbc] = 0,

and let Tab = FacFb
c − 1

4gabFcdF
cd be the corresponding energy-momentum tensor.

i) Show that Tab is conserved and traceless, i.e. ∇aT
a
b = 0 and T a

a = 0. Deduce
that for any smooth vector field V a, ∇a(T

abVb) =
1
2T

ab(LV g)ab.

ii) Show that if V a is a future directed timelike vector field, and W a is a future
directed timelike or null vector field then TabV

aW b ⩾ 0.
[Hint: At a point p, you may assume without loss of generality that gµν = ηµν ,
V µ = (1, 0, 0, 0) and W ν = (1, w, 0, 0) where |w| ⩽ 1.]

c) Let M = Ru × (0,∞)r × (0, π)θ × (0, 2π)ϕ and assume g is the Minkowski metric in
outgoing null coordinates:

g = −du2 − 2dudr + r2(dθ2 + sin2 θdϕ2)

where we take ∂/∂u to be future directed. Let Σt = {(u, r, θ, ϕ) ∈ M |u+ r = t}.

i) Find na, the unit future directed normal of Σt in the (u, r, θ, ϕ) coordinate
basis, together with the volume form dσ induced by g on the surface.

ii) Let V a be the vector field given in these coordinates by r ∂
∂r . Show that

LV dr = dr, LV du = LV dθ = LV dϕ = 0,

and deduce that
(LV g)ab = 2gab +

α

r
n(aVb)

for some constant α which you should determine. Deduce that∇a(T
abVb) ⩾ 0.

iii) By integrating ∇a(T
abVb) over the region S = {(u, r, θ, ϕ) : t0 ⩽ u + r ⩽ t1}

and assuming the fields decay sufficiently rapidly as r → ∞, show that

ε(t) =

∫

Σt

naT
abVb dσ

is a non-negative, monotone decreasing, function of t.
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a) i) For a variation of the metric gab → gab+δgab derive formulae for the variations
of the volume form, the inverse metric and the Christoffel symbols.

ii) Show that δR = −Rabδgab +∇aX
a, where Xa = gcbδΓc

a
b − gabδΓb

c
c. Deduce

that
δR = −Rabδgab + αgab∇c∇cδgab + β∇a∇bδgab.

where α, β are constants to be determined.

[In a coordinate basis Rµ
νρσ = ∂ρΓν

µ
σ − ∂σΓν

µ
ρ + Γν

τ
σΓτ

µ
ρ − Γν

τ
ρΓτ

µ
σ]

b) A proposed modification of Einstein’s theory is derived from the action

S =
1

16π

∫

M
f(R)dvolg + Smatter.

Here f is a given smooth function with f(0) = 0, and Smatter is an action
for the matter fields. Assume that under a variation of the metric Smatter →
Smatter +

1
2

∫
M T abδgabdvolg.

i) Show that requiring δS to vanish under any variation of the metric vanishing
outside a bounded region gives the field equations

f ′(R)Rab −
1

2
gabf(R) + [α′gab∇c∇c + β′∇a∇b]f

′(R) = 8πTab

for some constants α′, β′ which you should again determine.

ii) Show that in the absence of matter, the Minkowski spacetime satisfies the
field equations.

iii) Suppose additionally that f ′(0) = 1 and f ′′(0) = 0. Assume g may be written
in wave coordinates as a perturbation of the Minkowski metric:

gµν = ηµν + ϵhµν , ηµν = diag(−1, 1, 1, 1).

Writing Tµν = ϵTµν and discarding terms of O(ϵ2), derive the linearised field
equations and show that they agree with the linearized Einstein equations in
wave gauge

∂ρ∂ρhµν = −16πTµν , ∂µh
µ
ν = 0,

where hµν = hµν − 1
2hτ

τηµν , and indices are raised and lowered with the
Minkowski metric. What does this mean for the predictions of this theory in
the weak field regime?

You may assume that in any coordinate basis the Ricci tensor may be written

Rσν = −1

2
gµρ∂µ∂ρgσν + ΓλτνΓ

λτ
σ + ΓλτνΓ

τ
σ
λ + ΓλτσΓ

τ
ν
λ

+
1

2
∂σΓµν

µ +
1

2
∂νΓµσ

µ − Γµλ
µΓν

λ
σ

and that the wave coordinate condition takes the form Γµ
νµ = 0.
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4 Let M = Rt × (0,∞)r × (0, π)θ × (0, 2π)ϕ and consider the Schwarzschild metric in
Painlevé–Gullstrand coordinates

g = −
(
1− 2m

r

)
dt2 + 2

√
2m

r
drdt+ dr2 + r2(dθ2 + sin2 θdϕ2). (∗)

a) Show that an orthonormal basis of one-forms for this metric is given by {eµ}3µ=0

where

e0 = dt, e1 = dr +

√
2m

r
dt, e2 = rdθ, e3 = r sin θdϕ.

b) Find the connection one-forms ωµ
ν associated to this tetrad.

c) We say that a metric has diagonal curvature operator with respect to an orthonormal
basis {fµ}3µ=0 if the curvature two-forms satisfy Θµν ∝ fµ ∧ fν . Show that for any

such metric the Ricci tensor must be diagonal with respect to the basis {fµ}3µ=0.

d) By computing the curvature two-forms for the metric given in (∗), show that it has
diagonal curvature operator with respect to the basis {eµ}3µ=0 and hence find the
Ricci tensor.

e) With reference to the geodesic deviation equation, explain briefly why an observer
that approaches the set {r = 0} is unlikely to survive the encounter.

You may assume without proof Cartan’s first and second structure equations:

deµ + ωµ
ν ∧ eν = 0, dωµ

ν + ωµ
σ ∧ ωσ

ν = Θµ
ν .

END OF PAPER
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