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1 The generators of the Poincaré algebra are the hermitian operators Mµν and P σ

with algebra

[
Pµ , P ν

]
= 0,

[
Mµν , P σ

]
= i

(
Pµ ηνσ − P ν ηµσ

)
,

[
Mµν , Mρσ

]
= i

(
Mµσ ηνρ + Mνρ ηµσ − Mµρ ηνσ − Mνσ ηµρ

)
.

A spinor representation of the Lorentz algebra is provided by

(σµν)βα :=
i

4
(σµσ̄ν − σν σ̄µ)βα,

where σµαα̇ = (I, σ1, σ2, σ3)αα̇, i.e. the 2 by 2 identity matrix followed by the three Pauli
matrices, and (σ̄µ)α̇α = (I,−σ1,−σ2,−σ3)α̇α.

(a) In one sentence, describe what the Coleman-Mandula theorem says about extensions
of the Poincaré algebra in quantum field theory. Briefly discuss the assumption that
can be weakened to allow supersymmetry, including a short description of the type of
algebra that results.

(b) What does the Coleman-Mandula theorem imply for the algebra between an internal
symmetry generator Ta and a supersymmetry generator Qα? Ignoring R−symmetries,
extend the Poincaré algebra with the N = 1 generators Qα, Q̄α̇, giving detailed
arguments for the chosen form of each relation.

(c) Consider the action under a parity reversal operator P̂ , where |ηP | = 1 and

P̂ Qα P̂
−1 = ηP (σ0)αβ̇ Q̄

β̇, P̂ Q̄α̇ P̂−1 = −η∗P (σ̄0)α̇β Qβ.

By performing a parity transformation on each side of the algebra between Qα and
Q̄β̇ that you derived in part (b), check that the relation is consistent with a parity
transformation.

(d) Define the fermion number operator (−)F by its action on bosonic states |B⟩ and
fermionic states |F ⟩. Prove that the number of fermionic states nF is equal to the
number of bosonic states nB in any supermultiplet. Where does your argument break
down for theories that incorporate additional supersymmetry breaking terms in the
Lagrangian?
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(a) Define what it means for a superfield Φ(x, θ, θ̄) to be chiral. Give an example of a
chiral superfield in the MSSM and list the physical component fields contained within
it.

Show that, when written in terms of yµ := xµ + iθσµθ̄, a chiral superfield has a
particularly simple expansion in terms of component fields. Hence deduce that

Φ(x, θ, θ̄) = ϕ(x) +
√
2θψ(x) + (θθ)F (x) +Aθσµθ̄∂µϕ(x) +

B(θθ)∂µψ(x)σ
µθ̄ + C(θθ)(θ̄θ̄)∂µ∂

µϕ(x),

where A, B and C are constants which you should determine.

(b) Consider a globally N = 1 supersymmetric theory with only three chiral superfields
X2+, X0, X2− where the suffix labels the charge of the superfield under a gauged
U(1) symmetry of the theory. Do you expect the theory to possess a gauge anomaly?
Explain your answer including Feynman diagrams and a mathematical expression.

Write down the most general superpotential of the model.

Now set any parameters multiplying quadratic or linear superpotential terms to zero.
State in one sentence why we expect quantum corrections to respect these conditions.

Write down the scalar potential of the model including any Fayet-Iliopoulos terms,
and by analysing it, determine whether and how the model spontaneously breaks
supersymmetry, or U(1) symmetry, or both.

[ You should use the conventions followed by the course, e.g. ϵ12 = −ϵ12 = ϵ1̇2̇ = −ϵ1̇2̇ = 1
and ηµν is the ‘mostly minus’ metric. You may find the following super-covariant derivative
useful: D̄α̇ := −∂̄α̇ − iθβ(σµ)βα̇∂µ along with {σµ, σ̄ν} = 2ηµνI2, where I2 is the 2 by 2

identity matrix, and (σ̄µ)α̇α := ϵαβϵα̇β̇(σµ)ββ̇. ]
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3 Describe supersymmetric gauge unification. You should include graphs depicting
the evolution of gauge couplings for both the MSSM and the Standard Model and Feynman
diagrams for a contribution to the evolution of g2 from a superpartner and one from its
Standard Model counterpart, but you need not do any explicit computation.

The one-loop evolution of each MSSM gauge coupling ga(µ) with renormalisation
scale µ is given by

µ
dga(µ)

dµ
= βag

3
a(µ) (no sum on a),

where βa are real numerical constants. Solve the equation, finding ga(µ) in terms of input
data ga(µ0).

g1(MZ) and g2(MZ) are determined very accurately by experiments and can be
used, assuming MSSM gauge unification, to provide a prediction of g3(MZ). Determine
the gauge unification scale MGUT in terms of MZ , g2(MZ) and g1(MZ).

Then derive the gauge unification prediction

g−2
3 (MZ) = g−2

2 (MZ) +A[g−2
2 (MZ)− g−2

1 (MZ)],

where A is a numerical constant which you should evaluate in terms of the βa, which you
may assume all take different values. Do you expect this relation to be approximately
satisfied by current measurements? Give your reasoning.

END OF PAPER
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