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(a) Let X be a random element of L2[0, 1] such that E∥X∥2 < ∞, EX = 0 and
with covariance operator CX(·) = E(⟨X, ·⟩X). Let cX be the kernel of CX .
Determine whether each of the following is a covariance operator or not, and if
so, find its eigendecomposition.

(i) U with kernel u(s, t) = min(s, t), 0 ⩽ s, t ⩽ 1

(ii) U = Id, where Id is the identity operator

(iii) U with kernel u(s, t) = (s+ t)2, 0 ⩽ s, t ⩽ 1

(b) Let X,X1, . . . , Xn be i.i.d. random elements of L2[0, 1] such that E∥X∥4 < ∞,
EX = 0 and with covariance operator CX .

For a µ0 ∈ L2[0, 1], not necessarily equal to 0, find the asymptotic properties of
the estimator

ĉµ0(s, t) =
1

n

n∑

i=1

(Xi(t)− µ0(t))(Xi(s)− µ0(s))

for the kernel cX(s, t) of CX .

2 Let X,X1, . . . , Xn be i.i.d. random elements of L2[0, 1] such that E∥X∥4 < ∞,
EX = µ and with covariance operator CX . Consider the problem of testing the hypotheses

H0 : µ = 0 vs H1 : µ ̸= 0

(a) Using a function of ∥ 1
n

∑n
i=1Xi∥, give a test of the above hypothesis, and find

its properties under the null and alternative hypotheses.

(b) Using Functional Principal Component Analysis, give, for some K ∈ N, a K
dimensional test of the above hypothesis, and find its properties under the null
and alternative hypotheses.

(c) Give a permutation-type test to test the above hypothesis, and explain how its
p-value would be found, giving any assumption you need to make to find this.
(Its properties under the null and alternative do not need to be given).

(d) Give a short discussion of the advantages and disadvantages of your three
proposed tests in (a)-(c).

[You may assume that the first K + 1 eigenvalues of CX are all distinct. If you
state them, you may use the convergence properties of eigenvalues, eigenfunctions and
any version of the central limit theorem without proof].
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3 Let C1, C2, . . . , Cn, n > 1 be covariance operators on a separable Hilbert Space

(a) Let dL(Ci, Cj) = ∥Ci−Cj∥HS , where ∥ ·∥HS is the Hilbert-Schmidt norm. Find
C which minimizes

n∑

k=1

dL(Ck, C)2

(b) Define Procrustes distance dP (Ci, Cj) and prove the Procrustes distance is given
by

dP (Ci, Cj)
2 = ∥Li∥2HS + ∥Lj∥2HS − 2

∞∑

k=1

σk

where Ci = LiL
∗
i , L

∗
i is the adjoint of Li, with analogous definitions for Cj , and

σk are the singular values of L∗
jLi.

(c) Let {ek}∞k=1 be an orthonormal basis for L2[0, 1]. Let C1(·) = λ1⟨e1, ·⟩e1, and
C2(·) = λ2⟨e2, ·⟩e2 for some λ1, λ2 > 0. Find dL(C1, C2), dR(C1, C2) and
dP (C1, C2), where dR(C1, C2) is the square-root distance.

4 Let X be a random element of L2[0, 1] such that E∥X∥2 < ∞, EX = 0. Let ϵ be
a random element of L2[0, 1] such that E∥ϵ∥2 < ∞, E(ϵ) = 0, and let X, ϵ be mutually
independent. Let (Y,X, ϵ) follow the model,

Y (t) =

∫ 1

0
β(t, s)X(s)ds+ ϵ(t), t ∈ [0, 1]

where β ∈ L2([0, 1]× [0, 1]), and
∫ 1
0

∫ 1
0 β2(t, s)dtds < ∞.

Find an expression for ∫ 1

0
Var(E(Y (t)|X))dt

in terms of the principal component functions and scores of X and Y .
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