MAMA/225, NST3AS/225, MAAS/225

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday 4 June 2024 $9:00$ am to 11:00 am

PAPER 225

FUNCTIONAL DATA ANALYSIS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (a) Let X be a random element of $L^2[0,1]$ such that $\mathbb{E}||X||^2 < \infty$, $\mathbb{E}X = 0$ and with covariance operator $C_X(\cdot) = \mathbb{E}(\langle X, \cdot \rangle X)$. Let c_X be the kernel of C_X . Determine whether each of the following is a covariance operator or not, and if so, find its eigendecomposition.
 - (i) U with kernel $u(s,t) = \min(s,t), \quad 0 \le s, t \le 1$
 - (ii) U = Id, where Id is the identity operator
 - (iii) U with kernel $u(s,t) = (s+t)^2, \quad 0 \leq s, t \leq 1$
- (b) Let X, X_1, \ldots, X_n be i.i.d. random elements of $L^2[0, 1]$ such that $\mathbb{E} ||X||^4 < \infty$, $\mathbb{E}X = 0$ and with covariance operator C_X .

For a $\mu_0 \in L^2[0, 1]$, not necessarily equal to 0, find the asymptotic properties of the estimator

$$\hat{c}_{\mu_0}(s,t) = \frac{1}{n} \sum_{i=1}^n (X_i(t) - \mu_0(t))(X_i(s) - \mu_0(s))$$

for the kernel $c_X(s,t)$ of C_X .

2 Let X, X_1, \ldots, X_n be i.i.d. random elements of $L^2[0,1]$ such that $\mathbb{E}||X||^4 < \infty$, $\mathbb{E}X = \mu$ and with covariance operator C_X . Consider the problem of testing the hypotheses

$$H_0: \mu = 0 \quad \text{vs} \quad H_1: \mu \neq 0$$

- (a) Using a function of $\|\frac{1}{n}\sum_{i=1}^{n}X_i\|$, give a test of the above hypothesis, and find its properties under the null and alternative hypotheses.
- (b) Using Functional Principal Component Analysis, give, for some $K \in \mathbb{N}$, a K dimensional test of the above hypothesis, and find its properties under the null and alternative hypotheses.
- (c) Give a permutation-type test to test the above hypothesis, and explain how its p-value would be found, giving any assumption you need to make to find this. (Its properties under the null and alternative do not need to be given).
- (d) Give a short discussion of the advantages and disadvantages of your three proposed tests in (a)-(c).

[You may assume that the first K + 1 eigenvalues of C_X are all distinct. If you state them, you may use the convergence properties of eigenvalues, eigenfunctions and any version of the central limit theorem without proof].

- **3** Let $C_1, C_2, \ldots, C_n, n > 1$ be covariance operators on a separable Hilbert Space
 - (a) Let $d_L(C_i, C_j) = ||C_i C_j||_{HS}$, where $|| \cdot ||_{HS}$ is the Hilbert-Schmidt norm. Find *C* which minimizes

$$\sum_{k=1}^{n} d_L(C_k, C)^2$$

(b) Define Procrustes distance $d_P(C_i, C_j)$ and prove the Procrustes distance is given by

$$d_P(C_i, C_j)^2 = \|L_i\|_{HS}^2 + \|L_j\|_{HS}^2 - 2\sum_{k=1}^{\infty} \sigma_k$$

where $C_i = L_i L_i^*$, L_i^* is the adjoint of L_i , with analogous definitions for C_j , and σ_k are the singular values of $L_i^* L_i$.

(c) Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal basis for $L^2[0,1]$. Let $C_1(\cdot) = \lambda_1 \langle e_1, \cdot \rangle e_1$, and $C_2(\cdot) = \lambda_2 \langle e_2, \cdot \rangle e_2$ for some $\lambda_1, \lambda_2 > 0$. Find $d_L(C_1, C_2)$, $d_R(C_1, C_2)$ and $d_P(C_1, C_2)$, where $d_R(C_1, C_2)$ is the square-root distance.

4 Let X be a random element of $L^2[0,1]$ such that $\mathbb{E}||X||^2 < \infty$, $\mathbb{E}X = 0$. Let ϵ be a random element of $L^2[0,1]$ such that $\mathbb{E}||\epsilon||^2 < \infty$, $\mathbb{E}(\epsilon) = 0$, and let X, ϵ be mutually independent. Let (Y, X, ϵ) follow the model,

$$Y(t) = \int_0^1 \beta(t, s) X(s) ds + \epsilon(t), \quad t \in [0, 1]$$

where $\beta \in L^2([0,1] \times [0,1])$, and $\int_0^1 \int_0^1 \beta^2(t,s) dt ds < \infty$.

Find an expression for

$$\int_0^1 \operatorname{Var}(\mathbb{E}(Y(t)|X)) dt$$

in terms of the principal component functions and scores of X and Y.

END OF PAPER

Part III, Paper 225