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(a) State and prove the two data processing inequalities for mutual information. State
all the properties you use clearly.

(b) Suppose X,Y are integer-valued, independent and identically distributed random
variables. Show that:

H(X + Y )−H(X)

H(X − Y )−H(X)
⩽ 2.

State all the basic properties you use clearly.

Suppose {Xn} is a Markov chain on a finite state space A.

(c) Show that, if the chain is stationary, then, for all n,

H(Xn+1|X1) ⩾ H(Xn|X1).

(d) Show that:
I(X1;X3) + I(X2;X4) ⩽ I(X1;X4) + I(X2;X3).

State all the basic properties you use clearly.
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(a) Let Y be a discrete random variable with probability mass function Q on a finite
alphabet A. For any α ∈ (0, 1)∪(1,∞), the Rényi entropy of order α of Y is defined
as:

Hα(Y ) =
1

1− α
log

∑

y∈A
Q(y)α.

Show that: limα→1Hα(Y ) = H(Y ).

Let Xn
1 = (X1, X2, . . . , Xn) be a vector of n discrete random variables with values in a

finite alphabet A and with joint probability mass function Pn on An.

(b) State the codes-distributions correspondence and show that, for any prefix-free code
(Cn, Ln), we have E[Ln(X

n
1 )] ⩾ H(Xn

1 ).

(c) Now suppose that instead of minimising the expected description length we wish to
minimise the exponential moment E

[
2ρLn(Xn

1 )
]
for some ρ > 0. Show that for any

prefix-free code (Cn, Ln), we have,

1

ρ
logE

[
2ρLn(Xn

1 )
]
⩾ Hα(X

n
1 ),

for α = 1
1+ρ . Hint. You may find it useful to employ Jensen’s inequality for the

convex map x 7→ x−ρ, x > 0.

(d) Use (a) and (c) to give an alternative proof of (b).

3

(a) State and prove the limiting version of Sanov’s theorem in the following form:

“ lim
n→∞

− 1

n
logQn(P̂n ∈ E) = D(P ∗∥Q).”

Give all the necessary definitions and assumptions for this statement.

(b) Let {Xn} be independent and identically distributed random variables with prob-
ability mass function Q that has full support on a finite alphabet A. Let f : A → R
have mean µ = E[f(X1)]. Use the result of (a) to prove the weak law of large
numbers in this case: For any ϵ > 0:

P
(∣∣∣ 1

n

n∑

i=1

f(Xi)− µ
∣∣∣ ⩾ ϵ

)
→ 0 as n → ∞.
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(a) Roughly speaking, the “error exponents for fixed-rate compression” theorem says
that a memoryless source can be compressed to any rate above the entropy with
error probability decaying exponentially with some exponent D∗ > 0 that depends
on the rate and the source distribution.

State this theorem precisely and prove its direct part.

Let Q be a probability mass function with entropy H(Q) < log |A| on a finite alphabet A.
For each α ∈ [0, 1] define a new random variable Xα with probability mass function Qα

on A:

Qα(x) =
Q(x)α∑
y∈AQ(y)α

, x ∈ A.

(b) Show that, for any α ∈ (0, 1):

d

dα
H(Xα) = −α(loge 2)Var(logQ(Xα)).

(c) Show that, for any H(Q) < R < log |A|, the exponent D∗ in part (a) equals
D∗ = D(Qα∗∥Q) where α∗ is the unique α ∈ (0, 1) that achieves H(Qα) = R.

END OF PAPER
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