MAMA/224, NST3AS/224, MAAS/224

MAT3 MATHEMATICAL TRIPOS Part III

Wednesday 5 June 2024 9:00 am to 11:00 am

PAPER 224

INFORMATION THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{1}$

- (a) State and prove the two data processing inequalities for mutual information. State all the properties you use clearly.
- (b) Suppose X, Y are integer-valued, independent and identically distributed random variables. Show that: H(X + X) = H(X)

$$\frac{H(X+Y) - H(X)}{H(X-Y) - H(X)} \leqslant 2.$$

State all the basic properties you use clearly.

Suppose $\{X_n\}$ is a Markov chain on a finite state space A.

(c) Show that, if the chain is stationary, then, for all n,

$$H(X_{n+1}|X_1) \ge H(X_n|X_1).$$

(d) Show that:

$$I(X_1; X_3) + I(X_2; X_4) \leq I(X_1; X_4) + I(X_2; X_3).$$

State all the basic properties you use clearly.

 $\mathbf{2}$

(a) Let Y be a discrete random variable with probability mass function Q on a finite alphabet A. For any $\alpha \in (0,1) \cup (1,\infty)$, the *Rényi entropy of order* α of Y is defined as:

$$H_{\alpha}(Y) = \frac{1}{1-\alpha} \log \sum_{y \in A} Q(y)^{\alpha}.$$

Show that: $\lim_{\alpha \to 1} H_{\alpha}(Y) = H(Y)$.

Let $X_1^n = (X_1, X_2, \dots, X_n)$ be a vector of *n* discrete random variables with values in a finite alphabet *A* and with joint probability mass function P_n on A^n .

- (b) State the codes-distributions correspondence and show that, for any prefix-free code (C_n, L_n) , we have $\mathbb{E}[L_n(X_1^n)] \ge H(X_1^n)$.
- (c) Now suppose that instead of minimising the expected description length we wish to minimise the exponential moment $\mathbb{E}[2^{\rho L_n(X_1^n)}]$ for some $\rho > 0$. Show that for any prefix-free code (C_n, L_n) , we have,

$$\frac{1}{\rho} \log \mathbb{E} \left[2^{\rho L_n(X_1^n)} \right] \geqslant H_\alpha(X_1^n),$$

for $\alpha = \frac{1}{1+\rho}$. *Hint.* You may find it useful to employ Jensen's inequality for the convex map $x \mapsto x^{-\rho}$, x > 0.

(d) Use (a) and (c) to give an alternative proof of (b).

3

(a) State and prove the limiting version of Sanov's theorem in the following form:

$$\lim_{n \to \infty} -\frac{1}{n} \log Q^n (\hat{P}_n \in E) = D(P^* || Q).$$

Give all the necessary definitions and assumptions for this statement.

(b) Let $\{X_n\}$ be independent and identically distributed random variables with probability mass function Q that has full support on a finite alphabet A. Let $f : A \to \mathbb{R}$ have mean $\mu = \mathbb{E}[f(X_1)]$. Use the result of (a) to prove the weak law of large numbers in this case: For any $\epsilon > 0$:

$$\mathbb{P}\Big(\Big|\frac{1}{n}\sum_{i=1}^{n}f(X_{i})-\mu\Big| \ge \epsilon\Big) \to 0 \qquad \text{as } n \to \infty.$$

[TURN OVER]

3

- $\mathbf{4}$
- (a) Roughly speaking, the "error exponents for fixed-rate compression" theorem says that a memoryless source can be compressed to any rate above the entropy with error probability decaying exponentially with some exponent $D^* > 0$ that depends on the rate and the source distribution.

State this theorem precisely and prove its direct part.

Let Q be a probability mass function with entropy $H(Q) < \log |A|$ on a finite alphabet A. For each $\alpha \in [0,1]$ define a new random variable X_{α} with probability mass function Q_{α} on A:

$$Q_{\alpha}(x) = \frac{Q(x)^{\alpha}}{\sum_{y \in A} Q(y)^{\alpha}}, \quad x \in A.$$

(b) Show that, for any $\alpha \in (0,1)$:

$$\frac{d}{d\alpha}H(X_{\alpha}) = -\alpha(\log_e 2)\operatorname{Var}(\log Q(X_{\alpha})).$$

(c) Show that, for any $H(Q) < R < \log |A|$, the exponent D^* in part (a) equals $D^* = D(Q_{\alpha^*} || Q)$ where α^* is the unique $\alpha \in (0, 1)$ that achieves $H(Q_\alpha) = R$.

END OF PAPER