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1 Scale estimation via location estimation
Consider a family of univariate distributions parametrized by scale, where the

probability density function of Fσ is defined by

fσ(x) =
1

σ
f
(x
σ

)
,

for a fixed f : R → R.

(a) State the general form of an optimal B-robust scale M -estimator. Simplify the
formula in the case where f is the probability density function of a standard normal
distribution.

(b) Define Gθ to be the distribution of the random variable Y = logX2, where X ∼ Fσ

and θ = log σ2. Show that {Gθ : θ > 0} forms a location family.

Suppose Tn is a location M -estimator for θ based on observations yi = log x2i , defined in
terms of a function ψ : R → R satisfying the Fisher consistency condition

Eyi∼Gθ
[ψ(yi − θ)] = 0.

Further suppose ψ is differentiable, ψ′ is bounded, and Eyi∼G0 [ψ
2(yi)] <∞.

(c) Derive a result regarding asymptotic normality of (a recentered, rescaled version of)
Tn when xi ∼ Fσ.

(d) Derive a result regarding the asymptotic distribution of exp
(
Tn
2

)
. [Hint: Recall

the Delta Method, a fact you may use without proof: If
√
n(θ̂n − θ0)

d→ Z, then
√
n(F (θ̂n)− F (θ0))

d→ F ′(θ0)Z, for a continuously differentiable function F .]

[You may quote any result from the lectures that you need, without proof.]
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2 Breakdown point of trimmed estimator
Let ρ : R → R be a symmetric loss function such that ρ(|t|) is increasing in |t| and

supt ρ(t) = ∞. For a vector v ∈ Rn, we write ρ(v) to denote the vector in Rn with ith

component equal to ρ(vi). For an integer h ⩽ n and a regularization parameter λ > 0,
define the linear regression estimator

θ̂ ∈ arg min
θ∈Rp

{
h∑

i=1

(ρ(y −Xθ))(i) + λ∥θ∥1
}
, (1)

where y = (y1, . . . , yn)
T ∈ Rn is the vector of responses, X = {xij} ∈ Rn×p contains the

matrix of predictors {xi}ni=1, and the sum is taken over the smallest h order statistics of
the loss applied to the residuals. Define the breakdown point

ϵ∗(y,X, θ̂) =
1

n
·max
m⩾0

{
m : sup

Z′∈Zm

∥θ̂(Z ′)− θ̂(Z)∥2 <∞
}
,

where we write Z = (X, y) and denote by Zm the set of data sets where we arbitrarily
change at most m points of Z (allowing changes in both xi and yi).

(a) Let LZ′ denote the objective function defining the estimator (1), computed on a
data set Z ′ ∈ Zn−h. Derive the upper bound

LZ′(0) ⩽ hρ(My),

where My := max1⩽i⩽n |yi| is the maximum absolute response computed over Z.

(b) Conclude that the breakdown point satisfies ϵ∗(y,X, θ̂) ⩾ n−h
n . [Hint: Observe that

λ∥θ̂(Z ′)∥1 ⩽ LZ′(θ̂(Z ′)) and deduce a bound on ∥θ̂(Z ′)∥2.]

Now consider the data set Zγ,τ ∈ Zn−h+1 obtained by moving the last n−h+1 observations
in Z to (x0, y0) =

(
(τ, 0, . . . , 0)T , γτ

)
, where τ, γ > 0 are parameters to be specified.

(c) Define θγ = (γ, 0, . . . , 0)T . Derive the upper bound

LZγ,τ (θγ) ⩽ hρ

(
My + γ max

1⩽i⩽n
|xi1|

)
+ λγ.

(d) If θ = (θ1, . . . , θp)
T with ∥θ∥2 ⩽ γ − 1, derive the lower bound

LZγ,τ (θ) ⩾ ρ(τ).

[Hint: Observe that the computation of the objective function in the estimator (1)
must include at least one (x0, y0).]

(e) Conclude that the breakdown point also satisfies ϵ∗(y,X, θ̂) ⩽ n−h
n . [Hint: Suppose

supτ,γ ∥θ̂(Zγ,τ )∥2 ⩽ M . Choose γ and τ appropriately and use parts (c) and (d) to
obtain a contradiction.]
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3 Two views of robust hypothesis testing

(a) State a general formula for the influence function IF (x;T, F ), when F is a distribu-
tion on R and T corresponds to the location M -estimator associated to ψ : R → R.
[You do not need to rigorously justify the formula, and may assume that F and ψ
satisfy the usual regularity conditions assumed in lecture.]

(b) Using the formula in part (a), derive an expression for IF (x;T, F ) when T is the
Huber location M -estimator with parameter k and F is the distribution N(θ, 1).

Suppose we have two distributions P0 ̸= P1 and we wish to test the hypotheses

H0 : P ∈ Pϵ(P0) vs. H1 : P ∈ Pϵ(P1),

based on n samples xi
i.i.d.∼ P .

(c) Define what is meant by a maximin test at level α ∈ (0, 1).

(d) Suppose P0 = N(−θ0, 1) and P1 = N(θ0, 1), for some θ0 > 0. Derive the form of
a maximin test, assuming ϵ is sufficiently small. [You should simplify the rejection
rule as much as possible, but you need not explicitly compute any threshold or
truncation parameters as functions of (θ0, ϵ, α).]

(e) What is the influence function IFtest(x;T, F ) of the test in part (d) when F = P0?
Is IFtest bounded as a function of x?

[You may quote any result from the lectures that you need, without proof.]
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4 Another median-of-means estimator
Consider the d-dimensional multivariate location estimator defined by

µ̂(X) ∈ arg min
µ∈Rd

sup
∥v∥2⩽1

|MOMk(Xv)− µT v|, (1)

where X ∈ Rn×d is the data matrix containing n observations and MOMk : Rn → R
denotes the univariate median-of-means estimator, which computes the median of means
taken over k blocks. For simplicity, we assume that n is a multiple of k.

(a) Show that if we replace MOMk(Xv) in the definition of the estimator (1) by µT0 v,
for a fixed µ0 ∈ Rd, the unique minimizer is µ0.

(b) Prove that for any data matrix X ∈ Rn×d and any µ0 ∈ Rd, we have

∥µ̂(X)− µ0∥2 ⩽ 2 sup
∥v∥2⩽1

|MOMk(Xv)− µT0 v|.

[Hint: Use the triangle inequality and optimality of µ̂.]

In the remainder of the question, you may use the following fact: Suppose
X1, . . . , Xn are i.i.d. random vectors in Rd with mean µ0 and covariance Σ, such that
E[∥Xi∥22] < ∞. For any α ∈ (0, 1), there exists a constant cα such that, for any k ⩾ 1

α ,
with probability at least 1− exp(−k/cα), there exist at least (1−α)k blocks Bj satisfying

sup
∥v∥2⩽1

∣∣∣∣∣∣
1

|Bj |
∑

i:Xi∈Bj

XT
i v − µT0 v

∣∣∣∣∣∣
⩽ cα

√
max{tr(Σ), ∥Σ∥2k}

n
,

where cα does not depend on (n, d), and where ∥Σ∥2 is the operator norm of Σ.

(c) Using part (a) and the fact above, prove that for a suitably defined constant c and
sufficiently large k, with probability at least 1− exp(−k/c), we have

∥µ̂(X)− µ0∥2 ⩽ 2c

√
max{tr(Σ), ∥Σ∥2k}

n
.

(d) Now suppose ϵn of the data points are contaminated arbitrarily, i.e., up to ϵn rows
of the data matrix X are arbitrarily replaced, to obtain an observation matrix Z.
Prove that if k ⩾ 4max{nϵ, 1}, with probability at least 1− exp(−c′k), we have

∥µ̂(Z)− µ0∥2 ⩽ c′′
√

max{tr(Σ), ∥Σ∥2k}
n

,

for constants (c′, c′′) that do not depend on (n, k, d, ϵ). [Hint: Note that the
contaminated data can affect the means of at most ϵn blocks.]

(e) Compare the error bound for µ̂ obtained in part (d) with the error guarantee for

the Tukey median, as functions of ϵ and d, in the case when Xi
i.i.d.∼ N(µ0, Id).

[You may quote any result from the lectures that you need, without proof.]
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