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Consider a randomized clinical trial to test the efficacy of a new drug. Let the
treatment received by patient 1 ⩽ i ⩽ n be denoted as Zi, which takes one of three values:
0 (placebo), 1 (low dosage), or 2 (high dosage). Let the outcome of patient i be denoted
as Yi, which takes one of two values: 0 (death after 1 year) or 1 (death before 1 year).
We will assume no interference effect and use Yi(z) to denote the potential outcome of
patient i with treatment Zi = z, z = 0, 1, 2. Let Nzy =

∑n
i=1 1{Zi=z,Yi=y} be the number

of patients with treatment z = 0, 1, 2 and outcome y = 0, 1.

(i) Write down the joint distribution of Z1, . . . , Zn for the following two treatment
assignment mechanisms:

(a) The treatments are completely randomized with the only constraint that n0
patients receive the placebo, n1 patients receive the low dosage of the new
drug, and n2 patients receive the high dosage (n0 + n1 + n2 = n).

(b) Each patient receives the three treatments independently with probabilities
π0, π1, and π2 (π0 + π1 + π2 = 1).

Under the treatment assignment mechanism in (b), derive the conditional distribu-
tion of Z1, . . . , Zn given Nz· =

∑n
i=1 1{Zi=z}, z = 0, 1, 2.

(ii) Describe Fisher’s exact test in the analysis of 2× 2 contigency tables.

(iii) Suppose Statistician A assumes no dosage effect and groups the low dosage and high
dosage patients together before analyzing the data. In other words, Statistician A
uses the exposure Ai = 1{Zi⩾1}. Explain how the data can then be summarized by
a 2× 2 contigency table. Show that under both treatment assignment mechanisms
in part (i), Fisher’s exact test for the sharp null hypothesis HA : Yi(0) = Yi(1) =
Yi(2), i = 1, . . . , n is valid in the sense that its p-value PA satisfies

P(PA ⩽ α) ⩽ α for all 0 ⩽ α ⩽ 1 under HA.

(iv) Statistician B is interested in testing dosage effect and discards the placebo patients
in her data analysis. She then summarizes her data using another 2× 2 contigency
table and uses Fisher’s exact test to test the sharp null hypothesis HB : Yi(1) =
Yi(2), i = 1, . . . , n; denote the p-value as PB. Show that under both treatment
assignment mechanisms in part (i), this test is still valid and is nearly independent
of the test used by Statistician A in the sense that

P(PA ⩽ α1, PB ⩽ α2) ⩽ α1α2 for all 0 ⩽ α1, α2 ⩽ 1 under HA and HB.

[Hint: Use the law of iterated expectation by conditioning on A1, . . . , An.]
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Let V = (V1, . . . , Vp) be a random vector. Let Gu = (V, E) be an undirected graph
and Gd = (V,D) be an directed acyclic graph with vertex set V = {1, . . . , p}. Let f(v)
denote the probability density function of V at v.

(i) Explain what it means for the distribution of V to

(a) factorize according to Gu;

(b) satisfies the global Markov property with respect to Gu.

Then state the Hammersley-Clifford theorem.

(ii) Suppose V = (V1, . . . , Vp) follow the multivariate normal distribution with mean
µ and a positive definite covariance matrix Σ. Recall that the probability density
function of V at v = (v1, . . . , vp) is given by

f(v) = (2π)−p/2|Σ|−1/2 exp

{
−1

2
(v − µ)TΣ−1(v − µ)

}
.

For any j, k ∈ {1, . . . , p}, j ̸= k, show that Vj ⊥⊥ Vk | V{1,...,p}\{j,k} if and only if
(Σ−1)jk = 0, where (Σ−1)jk is the (j, k)-entry of Σ−1.

(iii) Explain what it means for the distribution of V to factorize according to Gd. Given
Gd, find the undirected graph Gu with the fewest possible edges such that whenever
the distribution of V factorizes according to Gd, it must also factorize according to
Gu.
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Consider the causal model represented by the following acyclic directed mixed graph
(ADMG).

X

A M Y

(i) Use nonparametric structural equations to define the basic potential outcomes in
this model, then describe the conditional independence relations between them.

(ii) Define what it means for a vertex to be fixable in a causal ADMG. Is A fixable in
the above graph?

(iii) Which of the following conditional independences are implied by the causal graph?
Justify your answer using the m-separation criterion.

(a) A ⊥⊥ X | Y .

(b) M ⊥⊥ Y (m) | X;

(c) A ⊥⊥ Y (a) | X;

(d) M ⊥⊥ Y (m) | A,X;

(e) A ⊥⊥M(a) | X.

(iv) Assuming all random variables are discrete, derive an identification formula for the
probability distribution of Y (a). [Hint: Extend the front-door formula.]
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Consider the problem of inferring the causal effect of a binary treatment variable
A on a real-valued outcome variable Y . Let X be some observed covariate. Let Y (a) be
the potential outcome when A is set to a = 0, 1. The following assumptions are made
in this question: (1) consistency of potential outcomes; (2) no unmeasured confounders:
A ⊥⊥ Y (a) | X, a = 0, 1; (3) positivity: 0 < π(X) < 1 where π(X) = P(A = 1 | X).

Consider the expected conditional covariance between A and Y :

β = E{Cov(A, Y | X)}.

(i) Show that β identifies a weighted average treatment effect in the sense that there
exists a function w(X) such that

β = E[w(X){Y (1)− Y (0)}].

Find an expression of w(X).

(ii) AssumingX is discrete, show that the influence function for the statistical functional
β is given by

ψ(X,A, Y ) = {A− π(X)}{Y − µ(X)} − β, (1)

where µ(X) = E(Y | X).

[You may use any results given in the lectures. It may be useful to know that the
influence curve of E(Y | X = x) (for fixed x) is given by

1{X=x}
P(X = x)

· (Y − E(Y | X = x)).]

(iii) Suppose we have an i.i.d. sample (Xi, Ai, Yi), i = 1, . . . , n and two estimators π̂m(X)
and µ̂m(X) obtained from an independent, external dataset with sample sizem. The
plug-in estimator of β is given by

β̂ =
1

n

n∑

i=1

{Ai − π̂m(Xi)}{Yi − µ̂m(Xi)}.

Suppose Y has bounded support. Suppose as n,m → ∞, MSE(π̂m) → 0,
MSE(µ̂m) → 0, and

√
nMSE(π̂m) ·MSE(µ̂m) → 0, where

MSE(µ̂m) = E[{µ̂m(X)− µ(X)}2] and MSE(π̂m) = E[{π̂m(X)− π(X)}2].

Show that √
n(β̂ − β) → N

(
0,Var(ψ(X,A, Y ))

)
in distribution.
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