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1 A scientist is investigating the effect of six different doses of a pesticide on salmonella
bacteria. They applied the same dose to three replicate plates containing salmonella and
recorded the number of salmonella colonies eradicated on each plate by the pesticide. The
following abbreviated R-code was used to analyse the data.

> head(salmonella, 9)

colonies dose

1 15 0

2 21 0

3 29 0

4 16 10

5 18 10

6 21 10

7 16 33

8 26 33

9 33 33

> model1 <- glm(colonies ~ dose, family="poisson", data = salmonella)

> summary(model1)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.3219950 0.0540292 61.485 <2e-16 ***

dose 0.0001901 0.0001172 1.622 0.105

...

Null deviance: 78.358 on 17 degrees of freedom

Residual deviance: 75.806 on 16 degrees of freedom

AIC: 172.34

...

> df1 <- model1$df.residual

> Xsq <- sum(residuals(model1,type="pearson")^2)

> phi.hat <- Xsq/df1

> 1-pchisq(Xsq,df1)

[1] 4.908651e-11

> model2 <- glm.nb(colonies ~ dose, data = salmonella)

> summary(model2)

...

[QUESTION CONTINUES ON THE NEXT PAGE]
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.3169342 0.1087599 30.498 <2e-16 ***

dose 0.0002097 0.0002474 0.848 0.397

...

Null deviance: 18.672 on 17 degrees of freedom

Residual deviance: 18.011 on 16 degrees of freedom

AIC: 141.66

...

Theta: 9.23

Std. Err.: 3.99

...

(a) Write down the model mathematically that has been fitted in model1. State the
log-likelihood and the deviance. Give an interpretation of the fitted intercept and
dose coefficients on the expected number of eradicated colonies.

(b) Write down mathematical expressions for the terms Xsq and phi.hat computed in
the R-code and name the quantities they are estimating. Find an approximation for
phi.hat from the output of model1.

(c) State the null and alternative hypotheses for the hypothesis test performed in the
R-code. Using the output of the test, explain why the scientist has fitted model2.
Does model2 improve on model1 according to the model outputs?

(d) Recall that a negative binomial GLM uses the log-link function and has variance
function V (µ) = µ + θ−1µ2 for a parameter θ > 0, which can be estimated by
maximum likelihood.

For which value of θ does model2 fit a Poisson GLM? To test whether the parameter
θ is necessary, the scientist carried out a likelihood ratio test using the following R

commands.

> test_stat <- 2*(logLik(model2) - logLik(model1))

> pval <- 1 - pchisq(test_stat, df = 1)

Explain why this test is not valid, and state in detail how a valid test can be carried
out using the parametric bootstrap. You do not need to state the likelihood of the
negative binomial distribution.
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2 Suppose we have a set of training data (x1, Y1), . . . , (xn, Yn) and an independent
set of test data (x1, Y

∗
1 ), . . . , (xn, Y

∗
n ), where for i = 1, . . . , n

Yi = f(xi) + εi, εi
i.i.d.∼ N(0, 1),

Y ∗
i = f(xi) + ε∗i , ε∗i

i.i.d.∼ N(0, 1),

with xi ∈ Rp and an unknown regression function f . Suppose that
∑n

i=1 xi = 0. Let
Y , Y ∗ ∈ Rn be the vectors with components Yi, Y

∗
i , i = 1, . . . , n, respectively, and let X

be the matrix with the xi as rows.

A data analyst has fitted a ridge regression model to the data using the code shown
below (recall that glmnet fits ridge regression for a grid of penalisation parameters).

> fit <- glmnet(X, Y, family="gaussian", intercept=TRUE, alpha=0)

> Y.hat <- predict(fit, X, type="response")

> err.train <- colMeans((Y - Y.hat)^2)

> err.test <- colMeans((Y.star - Y.hat)^2)

> plot(log(fit$lambda), err.test, type="l", ylim=c(0,0.5), ylab="", xlab="")

> points(log(fit$lambda), err.train, type="l", lty="dashed")
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(a) State the penalised optimisation problem of ridge regression, and give a closed form
expression for its solution when the penalisation parameter is non-vanishing. State
a formula for the fitted values obtained by ridge regression.

(b) Suggest a criterion for choosing the penalisation parameter in (a). Explain shortly
how bias and variance of the regression model are affected by the penalisation
parameter.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(c) Formulate the coordinate descent algorithm for finding a solution of the optimisation
problem in (a). State explicit solutions for the coordinate updates.

(d) What do the solid and dashed curves in the plot represent according to the code?
State mathematical expressions for the values of the solid and dashed curves as the
horizontal axis of the figure approaches +∞. Using the plot, state a mathematical
expression for the value of the solid curve as the horizontal axis of the figure
approaches −∞.

(e) Suppose a regression algorithm produces fitted values of the form HY ∈ Rn for
some H ∈ Rn×n depending on the xi, i = 1, . . . , n. Show that

E
[
∥Y −HY ∥22 + 2trace(H)

]
= E

[
∥Y ∗ −HY ∥22

]
.

Find the matrix H for the ridge regression model. Together with the plot, argue
that the training error is not useful for judging how well the ridge regression model
generalises on unseen data.
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3 Suppose we are given i.i.d. training data (Xi, Yi), i = 1, . . . , 9, withXi ∈ [0, 1]×[0, 1]
and Yi ∈ {’triangle’, ’circle’} as given in the plot below (X1 and X2 are the coordinates of
the Xi). Let X be the matrix with the Xi as rows and let Y be the vector with components
Yi.
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(a) Give a detailed description of the CART algorithm for computing a classifier for this
data, and define its prediction and training errors. Carefully introduce all necessary
notation. Hint: The cost function for classification is

Q =
N(U)

N(R)
G(U) +

N(V )

N(R)
G(V )−G(R),

for regions U , V and R as well as functions N and G, which you should specify.

(b) Show that the cost function Q in (a) is non-positive for all regions considered in (a).
Hint: The function p 7→ p(1− p) is concave on [0, 1].

(c) Explain shortly how the CART algorithm is used to compute the output of the
following abbreviated R-code:

> randomForest(X,Y,mtry=2)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 2

...

Confusion matrix:

1 2 class.error

1 3 3 0.5000000

2 2 1 0.6666667

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Name the procedure that is performed by the following R-code:

> err <- NULL

> for(i in 1:9) {err[i] <- predict(randomForest(X[-i,],Y[-i]),X[i,])!=Y[i]}

> mean(err)

Name an alternative method that approximates the result of mean(err) without
having to fit the 9 random forests.

(e) Sketch the decision boundaries for the data above for

(i) a nearest neighbour classifier,

(ii) an unpruned maximal tree classifier,

(iii) a random forest classifier with default parameters.

Explain what you expect as training errors for the three classifiers on this dataset.
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4 A statistician has trained a support vector classifier on data (X1, Y1), . . . , (Xn, Yn)
with Xi ∈ Rp and Yi ∈ {−1, 1}. Using the fitted classifier, they produced the following
plot.
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(a) Write down a mathematical expression for the support vector classifier and state
the associated penalised optimisation problem with a penalisation parameter λ > 0.

In the following, let γ̂ ∈ R1+p denote a solution of the optimisation problem in (a).

(b) Define separating hyperplane. How many support vectors are there according to the
plot, and how are they related to γ̂? How are the solid and dashed lines in the plot
related to γ̂? Discuss if we obtain the same solid and dashed lines as seen in the
plot when the penalisation parameter in (a) vanishes.

(c) Let X∗
i = (1, Xi) ∈ R1+p and Zi = ∥X∗

i ∥−1
2 X∗

i , and suppose that YiZ
T
i γ̂ ⩾ 1 for all

i = 1, . . . , n. Consider the following algorithm for computing γ̂:

(i) Initialise at γ(0) ∈ R1+p.

(ii) For m = 0, 1, 2, . . . : If there exists Zi such that YiZ
T
i γ

(m) ⩽ 0, then set
γ(m+1) = γ(m) + YiZi. Otherwise, return γ(m).

Show that ∥γ(m+1) − γ̂∥22 ⩽ ∥γ(m) − γ̂∥22 − 1. Conclude that the above algorithm
takes no more than ∥γ(0) − γ̂∥22 many steps to converge to γ̂.

(d) Define the logistic classifier for a two-class classification problem, and state the
optimisation problem that needs to be solved to find its parameters. Prove that
there is no solution for the data in the plot above. Discuss how we can modify the
fitting procedure to find an approximate solution.
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END OF PAPER
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