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1 Consider a discrete-time market model consisting of n assets with prices P =
(P',...P")>0 and paying dividends § = (6},...,0"")¢>1. For an n-dimensional previsible

process H define the notation

7 = Hi - P forallt>0
¢ =Hy - (P, +6;) — 7w} forall t > 1.

(a) What is an arbitrage in this market?

(b) What is a martingale deflator in this market? If Y is a martingale deflator, show that
for fixed H, the process Z defined by

t
Zy=n{'Yi+ ) &y,

s=1

is a local martingale. [Properties of the martingale transform, as proven in lectures, can
be used without proof.]

(c) State the first fundamental theorem of asset pricing.
From now on, assume that this market has no arbitrage.

(d) For a fixed H, prove that the market with n+1 assets with prices P=(P',..., P ¢
and dividends 0 = (6,...,6", M) also has no arbitrage.

(e) Let n be a previsible process such that 7 is previsible with w7} > 0, and & = 0 for all
t > 1. Show that 7 > 0 for all ¢ > 0.

(f) Let K be such that 7 = 1 for all + > 0 and that ¢¥ is previsible. Show that

7T17
K="t _1foralt>1
t n

T—1

where 7 is the process from part (e).

(g) Show that the following are equivalent:

(1) For every non-random 7' > 0 and Fr measurable random variable X7, there exists
a Fr_i-measurable random vector Hp such that Xp = Hp - (Pp + 07).

(2) For every non-random 7" > 0 and every adapted process (X;)i1<;<7 there exists a
previsible process H such that H; =0 for t > T + 1 and §{{ =X;foralll <t<T.

(h) Suppose one of the equivalent conditions from part (g) holds. Show that there can
exist at most one martingale deflator Y such that Yy = 1.
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2 Consider a T-period market with prices P = (FP;)o<t<r—1 and dividends § =
(0t)1<t<7- Suppose that one of the assets is a (zero-coupon) bond of maturity 7" with
time-t price B} and time-T dividend of 1. Assume that B >0 for all 0 <t < T — 1.

(a) What is a T'-forward measure for this model?

For the rest of the question, let Q7 be a T-forward measure. Furthermore, suppose
that the market contains a stock with non-negative time-T payout of Sr. Suppose also
that there is a family of forward contracts on the stock, each of maturity T, initiated
at times ¢t € {0,...,7 — 1}. Assume that the forward contract initiated at time ¢ has
JFi-measurable strike FtT, and that the price of the forward contract at initiation is zero.
That is, assume that F/ is the time-t forward price of the stock for maturity 7.

(b) Show that (F)o<t<7_1 is a martingale under Q7.

Suppose that the market has a family of European call options on the stock, each
with maturity T, with strikes in a finite set K C R. Let the time-t price of the call option
with strike K be C1™ for 0 <t < T —1.

(¢) Show that K — CtT’K is non-increasing for all 0 < ¢t < 7T — 1.

Suppose that the market contains a European contingent claim on the stock with
time-T" payout g(St), where g is a smooth convex function. Let m; be the time-t price of
the claim.

(d) Show that

N

m = Bl (9(0) + ¢ (OF) + 3" (¢ (K:) — g (Kim)) O™
=1

forall 0 <t < T —1, where K ={Kj,..., Ky} and Ky = 0.
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3 Throughout this question you may use standard results on stochastic calculus if
carefully stated. Consider a continuous-time market with three assets. The first is cash
with constant price By = 1 for all ¢ > 0. The second is a stock with price S = (St)¢>0
whose dynamics are given by

dS; = Si/vi(pdWi + /1 — p2dWb)
dvy = (o — Bog)dt + /v dWy

where Sp,vg, @, 8,7 are positive constants and —1 < p < 1, and where W and W+
are independent Brownian motions generating the filtration (F:)¢>0. The third asset
is a European claim on the stock with time-7" payout of ¢(Sr) and time-t price of
m = U(t, v, St) where U : [0,T] x Ry x Ry — R is a bounded function satisfying

U(T,v,s) = ()forallv 0,s >0,

ou LU RU LU
a oY 2 2 ) =—o.
o T Mau 2(7 02 TP gups T 832) 0

(a) Why is there no arbitrage in this market relative to cash? [Results on arbitrage-theory
as proven in lectures may be used if carefully stated.]

(b) Show that mo = E[g(S7)].
Let G: Ry x Ry — R be defined by

0o —1.2
Glea) = [ glee i) s
o T

(c) Show that
m = E {G (ST, (1-— p2)YT)}
where
dSy = Sypy/vidWy, So = So
dY;f = V¢ dt7 }/O == 0

(d) Show that
St = Spexp < (v —vo — T + Y7) — QPZYT>

Let U : [0,T] x Ry x Ry — R be a bounded solution of

1

U(T,v,y) = G(Soe'v(v vo—oD)H2=20" (1 _ g2} for all v > 0,y = 0
oU LU LU U

Z Z = 4927 =
ot (o ﬁv) 2 (7 ov? + 8y> 0

(e) Show that o = U(0, v, 0).
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(a) Let U be a discrete-time supermartingale. Show that there exists a martingale M and
a previsible non-decreasing process A such that My =0 = Ay and U; = Uy + M; — Ay for
all t > 0.

Let Z = (Zi)o<t<T be a discrete-time integrable adapted process. Let U be defined
by

Ur="Z2r
Ut == max{Zt,E(UtHU:t)} for all 0 <t < T-—1.

All stopping times in this problem take values in {0,...,T'}.
(b) Let 7 be a stopping time. Show that Uy > E(Z,).

(c) Find a stopping time 7* such that Uy = E(Z;~).

(d) Let X be a martingale such that Xo = 0. Show that

Up < ]E(Olgtzg%{Zt + Xi}).

[Hint: First explain why E(Z, + X;) = E(Z;) for any stopping time 7.]
(e) Show that there exists a martingale X* with X¢ = 0 such that

Uo = E( max {Z; + X;'}).

0<t<

END OF PAPER
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