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1 Consider a discrete-time market model consisting of n assets with prices P =
(P 1, . . . Pn

t )t⩾0 and paying dividends δ = (δ1t , . . . , δ
n
t )t⩾1. For an n-dimensional previsible

process H define the notation

πH
t = Ht+1 · Pt for all t ⩾ 0

ξHt = Ht · (Pt + δt)− πH
t for all t ⩾ 1.

(a) What is an arbitrage in this market?

(b) What is a martingale deflator in this market? If Y is a martingale deflator, show that
for fixed H, the process Z defined by

Zt = πH
t Yt +

t∑

s=1

ξHs Ys

is a local martingale. [Properties of the martingale transform, as proven in lectures, can
be used without proof.]

(c) State the first fundamental theorem of asset pricing.

From now on, assume that this market has no arbitrage.

(d) For a fixedH, prove that the market with n+1 assets with prices P̃ = (P 1, . . . , Pn, πH)
and dividends δ̃ = (δ1, . . . , δn, ξH) also has no arbitrage.

(e) Let η be a previsible process such that πη is previsible with πη
0 > 0, and ξηt = 0 for all

t ⩾ 1. Show that πη
t > 0 for all t > 0.

(f) Let K be such that πK
t = 1 for all t ⩾ 0 and that ξK is previsible. Show that

ξKt =
πη
t

πη
t−1

− 1 for all t ⩾ 1

where η is the process from part (e).

(g) Show that the following are equivalent:

(1) For every non-random T > 0 and FT measurable random variable XT , there exists
a FT−1-measurable random vector HT such that XT = HT · (PT + δT ).

(2) For every non-random T > 0 and every adapted process (Xt)1⩽t⩽T there exists a
previsible process H such that Ht = 0 for t ⩾ T + 1 and ξHt = Xt for all 1 ⩽ t ⩽ T .

(h) Suppose one of the equivalent conditions from part (g) holds. Show that there can
exist at most one martingale deflator Y such that Y0 = 1.
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2 Consider a T -period market with prices P = (Pt)0⩽t⩽T−1 and dividends δ =
(δt)1⩽t⩽T . Suppose that one of the assets is a (zero-coupon) bond of maturity T with
time-t price BT

t and time-T dividend of 1. Assume that BT
t > 0 for all 0 ⩽ t ⩽ T − 1.

(a) What is a T -forward measure for this model?

For the rest of the question, let QT be a T -forward measure. Furthermore, suppose
that the market contains a stock with non-negative time-T payout of ST . Suppose also
that there is a family of forward contracts on the stock, each of maturity T , initiated
at times t ∈ {0, . . . , T − 1}. Assume that the forward contract initiated at time t has
Ft-measurable strike F T

t , and that the price of the forward contract at initiation is zero.
That is, assume that F T

t is the time-t forward price of the stock for maturity T .

(b) Show that (F T
t )0⩽t⩽T−1 is a martingale under QT .

Suppose that the market has a family of European call options on the stock, each
with maturity T , with strikes in a finite set K ⊂ R+. Let the time-t price of the call option
with strike K be CT,K

t for 0 ⩽ t ⩽ T − 1.

(c) Show that K 7→ CT,K
t is non-increasing for all 0 ⩽ t ⩽ T − 1.

Suppose that the market contains a European contingent claim on the stock with
time-T payout g(ST ), where g is a smooth convex function. Let πt be the time-t price of
the claim.

(d) Show that

πt ⩾ BT
t

(
g(0) + g′(0)F T

t

)
+

N∑

i=1

(
g′(Ki)− g′(Ki−1)

)
CT,Ki
t

for all 0 ⩽ t ⩽ T − 1, where K = {K1, . . . ,KN} and K0 = 0.
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3 Throughout this question you may use standard results on stochastic calculus if
carefully stated. Consider a continuous-time market with three assets. The first is cash
with constant price Bt = 1 for all t ⩾ 0. The second is a stock with price S = (St)t⩾0

whose dynamics are given by

dSt = St
√
vt(ρdWt +

√
1− ρ2dW⊥

t )

dvt = (α− βvt)dt+ γ
√
vtdWt

where S0, v0, α, β, γ are positive constants and −1 ⩽ ρ ⩽ 1, and where W and W⊥

are independent Brownian motions generating the filtration (Ft)t⩾0. The third asset
is a European claim on the stock with time-T payout of g(ST ) and time-t price of
πt = U(t, vt, St) where U : [0, T ]× R+ × R+ → R is a bounded function satisfying

U(T, v, s) = g(s) for all v ⩾ 0, s ⩾ 0,

∂U

∂t
+ (α− βv)

∂U

∂v
+

v

2

(
γ2

∂2U

∂v2
+ 2sγρ

∂2U

∂v∂s
+ s2

∂2U

∂s2

)
= 0.

(a) Why is there no arbitrage in this market relative to cash? [Results on arbitrage-theory
as proven in lectures may be used if carefully stated.]

(b) Show that π0 = E[g(ST )].

Let G : R+ × R+ → R be defined by

G(c, q) =

∫ ∞

−∞
g(ce−

1
2
q+

√
qz)

e−
1
2
z2

√
2π

dz

(c) Show that

π0 = E
[
G
(
S̃T , (1− ρ2)YT

)]

where

dS̃t = S̃tρ
√
vtdWt, S̃0 = S0

dYt = vt dt, Y0 = 0

(d) Show that

S̃T = S0 exp

(
ρ
γ (vT − v0 − αT + βYT )− 1

2ρ
2YT

)
.

Let Ũ : [0, T ]× R+ × R+ → R be a bounded solution of

Ũ(T, v, y) = G(S0e
ρ
γ
(v−v0−αT )+( ρβ

γ
− 1

2
ρ2)y

, (1− ρ2)y), for all v ⩾ 0, y ⩾ 0

∂Ũ

∂t
+ (α− βv)

∂Ũ

∂v
+

v

2

(
γ2

∂2Ũ

∂v2
+ 2

∂Ũ

∂y

)
= 0

(e) Show that π0 = Ũ(0, v0, 0).
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(a) Let U be a discrete-time supermartingale. Show that there exists a martingale M and
a previsible non-decreasing process A such that M0 = 0 = A0 and Ut = U0 +Mt −At for
all t ⩾ 0.

Let Z = (Zt)0⩽t⩽T be a discrete-time integrable adapted process. Let U be defined
by

UT = ZT

Ut = max{Zt,E(Ut+1|Ft)} for all 0 ⩽ t ⩽ T − 1.

All stopping times in this problem take values in {0, . . . , T}.
(b) Let τ be a stopping time. Show that U0 ⩾ E(Zτ ).

(c) Find a stopping time τ∗ such that U0 = E(Zτ∗).

(d) Let X be a martingale such that X0 = 0. Show that

U0 ⩽ E( max
0⩽t⩽T

{Zt +Xt}).

[Hint: First explain why E(Zτ +Xτ ) = E(Zτ ) for any stopping time τ .]

(e) Show that there exists a martingale X∗ with X0 = 0 such that

U0 = E( max
0⩽t⩽T

{Zt +X∗
t }).

END OF PAPER
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