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1 Define what it means for a random variable X with E(X) = 0 to be sub-Gamma
in the right tail with variance factor σ2 > 0 and scale parameter c > 0. Prove that if X is
such a random variable, then

P(X ⩾ x) ⩽ e
− x2

2(σ2+cx) ⩽ max
{
e−x2/(4σ2), e−x/(4c)

}
(1)

for all x ⩾ 0.

State and prove Bernstein’s inequality.

[You may use the facts that eu − 1 − u ⩽ u2/2 for all u ⩽ 0, and log u ⩽ u − 1 for
u > 0.]

Let X1, . . . , Xn be independent, real-valued random variables with distribution
function F . Define the empirical distribution function Fn. By using a version of the
second bound in (1), or otherwise, prove that for every x ∈ R and δ ∈ (0, 1], we have

P
(
Fn(x)− F (x) ⩾ 2

√
F (x)

(
1− F (x)

)
log(1/δ)

n
+

4
(
1− F (x)

)

3n
log(1/δ)

)
⩽ δ.
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2 LetX1, . . . , Xn be independent, real-valued random variables with density f . Define
what is meant by a kernel K and by a kernel density estimator f̂n ≡ f̂n,h,K of f with
bandwidth h > 0 and kernel K. What is meant by saying that a kernel is of order ℓ ∈ N?

Let p ∈ [2,∞), and suppose that we wish to estimate f with loss function

L(f̂ , f) :=

∫ ∞

−∞
|f̂(x)− f(x)|p dx.

For β, L > 0 and m := ⌈β⌉ − 1, let Np(β, L) denote the set of (m− 1)-times differentiable
g : R → R, for which g(m−1) is locally absolutely continuous, with weak derivative g(m)

satisfying {∫ ∞

−∞

∣∣g(m)(x+ t)− g(m)(x)
∣∣p dx

}1/p

⩽ L|t|β−m

for all t ∈ R. Further, let FN ,p(β, L) denote the set of densities that are in Np(β, L).
Prove that if f ∈ FN ,p(β, L), and if K is of order ⌈β⌉, then

EL(f̂n,h,K , f) ⩽ 22p−1CpRp(K)

(nh)p−1
+

2p−1CpR(K)p/2∥f∥p/2p/2

(nh)p/2
+

2p−1Lp

(m!)p
µp
β(K)hpβ,

where Rp(K) :=
∫∞
−∞ |K(u)|p du, R(K) :=

∫∞
−∞K(u)2 du, µβ(K) :=

∫∞
−∞ |u|β|K(u)| du,

∥f∥q :=
(∫∞

−∞ f(x)q dx
)1/q

for q ∈ [1,∞), and where Cp appears below.

[You may use the fact that ifW1, . . . ,Wn are independent and identically distributed
with E(W1) = 0, and if p ∈ [2,∞), then

E
(∣∣∣∣

1

n

n∑

i=1

Wi

∣∣∣∣
p)

⩽ Cp

{
E(|W1|p)
np−1

+

(
E(W 2

1 )
)p/2

np/2

}
,

where Cp > 0 depends only on p. You may also use the fact that if g1, g2 : R → R are
Borel measurable with

∫∞
−∞ |g1(u)| du < ∞ and

∫∞
−∞ |g2(u)|q du < ∞ for some q ∈ [1,∞),

then their convolution g1 ∗ g2 is Borel measurable and satisfies

(∫ ∞

−∞
|(g1 ∗ g2)(u)|q du

)1/q

⩽
(∫ ∞

−∞
|g1(u)| du

)(∫ ∞

−∞
|g2(u)|q du

)1/q

.

The inequality (a + b)r ⩽ 2r−1(ar + br) for a, b ⩾ 0 and r ⩾ 1 may be used without
proof.]
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3 Let n ⩾ 3 and let a ⩽ x1 < . . . < xn ⩽ b. What is a cubic spline with knots at
x1, . . . , xn? What does it mean to say that such a cubic spline is natural?

Let S2[a, b] denote the set of real-valued functions on [a, b] that have an absolutely
continuous first derivative. Prove that for any (g1, . . . , gn)

⊤ ∈ Rn, the natural cubic spline

interpolant to g1, . . . , gn at x1, . . . , xn is the unique minimiser of R(g̃′′) :=
∫ b
a g̃′′(x)2 dx

over all g̃ ∈ S2[a, b] that interpolate g1, . . . , gn at x1, . . . , xn.

[You may assume the existence and uniqueness of such a natural cubic spline
interpolant.]

Consider the nonparametric regression model

Yi = g(xi) + σϵi,

where ϵ1, . . . , ϵn are independent, with E(ϵi) = 0 and Var(ϵi) = 1 for i ∈ [n]. Prove

that for each λ > 0, there exists a unique minimiser ĝλ of Sλ(g̃) :=
∑n

i=1

{
Yi − g̃(xi)

}2
+

λ
∫ b
a g̃′′(x)2 dx over g̃ ∈ S2[a, b], and find a closed-form expression for

(
ĝλ(x1), . . . , ĝλ(xn)

)⊤
.

[You may assume that given g = (g1, . . . , gn)
⊤ ∈ Rn, there exists a non-negative

definite matrix K ∈ Rn×n such that the natural cubic spline interpolant g to g1, . . . , gn at
x1, . . . , xn satisfies ∫ b

a
g′′(x)2 dx = g⊤Kg.

]

For λ > 0, define the cross validation score CV(λ) in terms of the data and solutions
ĝ−i,λ, for i ∈ [n], to optimisation problems that you should also define. For i ∈ [n], write

down a vector Ỹ(i) ∈ Rn such that
(
ĝ−i,λ(x1), . . . , ĝ−i,λ(xn)

)⊤
= (I + λK)−1Ỹ(i). Deduce

that, for a given λ > 0, we can compute CV(λ) via a single natural cubic spline fit.
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4 State Assouad’s lemma.

Fix n ∈ N with n ⩾ 2, and let xi := i/n for i ∈ {0} ∪ [n]. Let θ0 := 0 and let

Cn :=

{
θ = (θ1, . . . , θn)

⊤ ∈ Rn :
θi+1 − θi
xi+1 − xi

⩾ θi − θi−1

xi − xi−1
for i ∈ [n− 1]

}

denote the convex cone in Rn. Consider the convex regression model

Yi = θi + ϵi

for i ∈ [n], where θ = (θ1, . . . , θn)
⊤ ∈ Cn∩[0, 1]n and ϵ1, . . . , ϵn

iid∼ N(0, 1). Let Θ̂ denote the
set of Borel measurable functions from Rn to Rn, and define θ∗ = (θ∗1, . . . , θ

∗
n)

⊤ ∈ Cn∩[0, 1]n
by θ∗i := (i/n)2 for i ∈ [n]. By considering piecewise linear perturbations of θ∗, or
otherwise, prove that there exist universal constants c > 0 and n0 ∈ N such that

inf
θ̂∈Θ̂

sup
θ∈Cn∩[0,1]n

1

n
Eθ

(
∥θ̂(Y1, . . . , Yn)− θ∥2

)
⩾ c · n−4/5

for all n ⩾ n0.

[You may use the fact that for each k ∈ [n] and for m := ⌊n/k⌋, the squared
Euclidean distance between such perturbations that differ on only one segment of the
form {i ∈ [n] : (j − 1)k + 1 ⩽ i ⩽ jk} does not depend on j ∈ [m].]

Writing Mn for the monotone cone in Rn, could there exist an estimator θ̂ ∈ Θ̂ and
universal constants C > 0, γ > 4/5 such that

sup
θ∈Cn∩Mn∩[0,1]n

1

n
Eθ

(
∥θ̂(Y1, . . . , Yn)− θ∥2

)
⩽ C · n−γ

for all n ∈ N? Justify your answer briefly.

[Pinsker’s inequality may be used without proof.]

[Hint: For k ∈ N,

k−1∑

ℓ=0

ℓ2(k − 1− ℓ)2 =
1

30
k(k − 1)(k − 2)(k2 − 2k + 2).

]

END OF PAPER
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