MAMA/210, NST3AS/210, MAAS/210

MAT3 MATHEMATICAL TRIPOS Part III

Monday 3 June 2024 $-1{:}30~\mathrm{pm}$ to 3:30 pm

PAPER 210

TOPICS IN STATISTICAL THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Define what it means for a random variable X with $\mathbb{E}(X) = 0$ to be sub-Gamma in the right tail with variance factor $\sigma^2 > 0$ and scale parameter c > 0. Prove that if X is such a random variable, then

$$\mathbb{P}(X \ge x) \leqslant e^{-\frac{x^2}{2(\sigma^2 + cx)}} \leqslant \max\left\{e^{-x^2/(4\sigma^2)}, e^{-x/(4c)}\right\}$$
(1)

for all $x \ge 0$.

State and prove Bernstein's inequality.

[You may use the facts that $e^u - 1 - u \leq u^2/2$ for all $u \leq 0$, and $\log u \leq u - 1$ for u > 0.]

Let X_1, \ldots, X_n be independent, real-valued random variables with distribution function F. Define the *empirical distribution function* \mathbb{F}_n . By using a version of the second bound in (1), or otherwise, prove that for every $x \in \mathbb{R}$ and $\delta \in (0, 1]$, we have

$$\mathbb{P}\bigg(\mathbb{F}_n(x) - F(x) \ge 2\sqrt{\frac{F(x)\big(1 - F(x)\big)\log(1/\delta)}{n}} + \frac{4\big(1 - F(x)\big)}{3n}\log(1/\delta)\bigg) \le \delta.$$

2 Let X_1, \ldots, X_n be independent, real-valued random variables with density f. Define what is meant by a *kernel* K and by a *kernel density estimator* $\hat{f}_n \equiv \hat{f}_{n,h,K}$ of f with bandwidth h > 0 and kernel K. What is meant by saying that a kernel is of order $\ell \in \mathbb{N}$?

Let $p \in [2, \infty)$, and suppose that we wish to estimate f with loss function

$$L(\hat{f}, f) := \int_{-\infty}^{\infty} |\hat{f}(x) - f(x)|^p \, dx.$$

For $\beta, L > 0$ and $m := \lceil \beta \rceil - 1$, let $\mathcal{N}_p(\beta, L)$ denote the set of (m-1)-times differentiable $g : \mathbb{R} \to \mathbb{R}$, for which $g^{(m-1)}$ is locally absolutely continuous, with weak derivative $g^{(m)}$ satisfying

$$\left\{\int_{-\infty}^{\infty} \left|g^{(m)}(x+t) - g^{(m)}(x)\right|^p dx\right\}^{1/p} \leq L|t|^{\beta-m}$$

for all $t \in \mathbb{R}$. Further, let $\mathcal{F}_{\mathcal{N},p}(\beta, L)$ denote the set of densities that are in $\mathcal{N}_p(\beta, L)$. Prove that if $f \in \mathcal{F}_{\mathcal{N},p}(\beta, L)$, and if K is of order $\lceil \beta \rceil$, then

$$\mathbb{E}L(\hat{f}_{n,h,K},f) \leqslant \frac{2^{2p-1}C_p R_p(K)}{(nh)^{p-1}} + \frac{2^{p-1}C_p R(K)^{p/2} \|f\|_{p/2}^{p/2}}{(nh)^{p/2}} + \frac{2^{p-1}L^p}{(m!)^p} \mu_{\beta}^p(K) h^{p\beta},$$

where $R_p(K) := \int_{-\infty}^{\infty} |K(u)|^p du$, $R(K) := \int_{-\infty}^{\infty} K(u)^2 du$, $\mu_{\beta}(K) := \int_{-\infty}^{\infty} |u|^{\beta} |K(u)| du$, $\|f\|_q := \left(\int_{-\infty}^{\infty} f(x)^q dx\right)^{1/q}$ for $q \in [1, \infty)$, and where C_p appears below.

[You may use the fact that if W_1, \ldots, W_n are independent and identically distributed with $\mathbb{E}(W_1) = 0$, and if $p \in [2, \infty)$, then

$$\mathbb{E}\left(\left|\frac{1}{n}\sum_{i=1}^{n}W_{i}\right|^{p}\right) \leqslant C_{p}\left\{\frac{\mathbb{E}(|W_{1}|^{p})}{n^{p-1}} + \frac{\left(\mathbb{E}(W_{1}^{2})\right)^{p/2}}{n^{p/2}}\right\}.$$

where $C_p > 0$ depends only on p. You may also use the fact that if $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ are Borel measurable with $\int_{-\infty}^{\infty} |g_1(u)| \, du < \infty$ and $\int_{-\infty}^{\infty} |g_2(u)|^q \, du < \infty$ for some $q \in [1, \infty)$, then their convolution $g_1 * g_2$ is Borel measurable and satisfies

$$\left(\int_{-\infty}^{\infty} |(g_1 * g_2)(u)|^q \, du\right)^{1/q} \leqslant \left(\int_{-\infty}^{\infty} |g_1(u)| \, du\right) \left(\int_{-\infty}^{\infty} |g_2(u)|^q \, du\right)^{1/q}.$$

The inequality $(a + b)^r \leq 2^{r-1}(a^r + b^r)$ for $a, b \geq 0$ and $r \geq 1$ may be used without proof.]

3 Let $n \ge 3$ and let $a \le x_1 < \ldots < x_n \le b$. What is a *cubic spline* with knots at x_1, \ldots, x_n ? What does it mean to say that such a cubic spline is *natural*?

Let $S_2[a, b]$ denote the set of real-valued functions on [a, b] that have an absolutely continuous first derivative. Prove that for any $(g_1, \ldots, g_n)^\top \in \mathbb{R}^n$, the natural cubic spline interpolant to g_1, \ldots, g_n at x_1, \ldots, x_n is the unique minimiser of $R(\tilde{g}'') := \int_a^b \tilde{g}''(x)^2 dx$ over all $\tilde{g} \in S_2[a, b]$ that interpolate g_1, \ldots, g_n at x_1, \ldots, x_n .

[You may assume the existence and uniqueness of such a natural cubic spline interpolant.]

Consider the nonparametric regression model

$$Y_i = g(x_i) + \sigma \epsilon_i,$$

where $\epsilon_1, \ldots, \epsilon_n$ are independent, with $\mathbb{E}(\epsilon_i) = 0$ and $\operatorname{Var}(\epsilon_i) = 1$ for $i \in [n]$. Prove that for each $\lambda > 0$, there exists a unique minimiser \hat{g}_{λ} of $S_{\lambda}(\tilde{g}) := \sum_{i=1}^{n} \{Y_i - \tilde{g}(x_i)\}^2 + \lambda \int_a^b \tilde{g}''(x)^2 dx$ over $\tilde{g} \in S_2[a, b]$, and find a closed-form expression for $(\hat{g}_{\lambda}(x_1), \ldots, \hat{g}_{\lambda}(x_n))^{\top}$.

[You may assume that given $\mathbf{g} = (g_1, \ldots, g_n)^\top \in \mathbb{R}^n$, there exists a non-negative definite matrix $K \in \mathbb{R}^{n \times n}$ such that the natural cubic spline interpolant g to g_1, \ldots, g_n at x_1, \ldots, x_n satisfies

$$\int_a^b g''(x)^2 \, dx = \mathbf{g}^\top K \mathbf{g}.$$

]

For $\lambda > 0$, define the cross validation score $CV(\lambda)$ in terms of the data and solutions $\hat{g}_{-i,\lambda}$, for $i \in [n]$, to optimisation problems that you should also define. For $i \in [n]$, write down a vector $\tilde{\mathbf{Y}}^{(i)} \in \mathbb{R}^n$ such that $(\hat{g}_{-i,\lambda}(x_1), \ldots, \hat{g}_{-i,\lambda}(x_n))^{\top} = (I + \lambda K)^{-1} \tilde{\mathbf{Y}}^{(i)}$. Deduce that, for a given $\lambda > 0$, we can compute $CV(\lambda)$ via a single natural cubic spline fit.

4 State Assouad's lemma.

Fix $n \in \mathbb{N}$ with $n \ge 2$, and let $x_i := i/n$ for $i \in \{0\} \cup [n]$. Let $\theta_0 := 0$ and let

$$\mathcal{C}_n := \left\{ \theta = (\theta_1, \dots, \theta_n)^\top \in \mathbb{R}^n : \frac{\theta_{i+1} - \theta_i}{x_{i+1} - x_i} \ge \frac{\theta_i - \theta_{i-1}}{x_i - x_{i-1}} \text{ for } i \in [n-1] \right\}$$

denote the *convex cone* in \mathbb{R}^n . Consider the convex regression model

$$Y_i = \theta_i + \epsilon_i$$

for $i \in [n]$, where $\theta = (\theta_1, \ldots, \theta_n)^\top \in \mathcal{C}_n \cap [0, 1]^n$ and $\epsilon_1, \ldots, \epsilon_n \stackrel{\text{iid}}{\sim} N(0, 1)$. Let $\hat{\Theta}$ denote the set of Borel measurable functions from \mathbb{R}^n to \mathbb{R}^n , and define $\theta^* = (\theta_1^*, \ldots, \theta_n^*)^\top \in \mathcal{C}_n \cap [0, 1]^n$ by $\theta_i^* := (i/n)^2$ for $i \in [n]$. By considering piecewise linear perturbations of θ^* , or otherwise, prove that there exist universal constants c > 0 and $n_0 \in \mathbb{N}$ such that

$$\inf_{\hat{\theta}\in\hat{\Theta}}\sup_{\theta\in\mathcal{C}_n\cap[0,1]^n}\frac{1}{n}\mathbb{E}_{\theta}\left(\|\hat{\theta}(Y_1,\ldots,Y_n)-\theta\|^2\right) \ge c\cdot n^{-4/5}$$

for all $n \ge n_0$.

[You may use the fact that for each $k \in [n]$ and for $m := \lfloor n/k \rfloor$, the squared Euclidean distance between such perturbations that differ on only one segment of the form $\{i \in [n] : (j-1)k + 1 \leq i \leq jk\}$ does not depend on $j \in [m]$.]

Writing \mathcal{M}_n for the monotone cone in \mathbb{R}^n , could there exist an estimator $\hat{\theta} \in \hat{\Theta}$ and universal constants C > 0, $\gamma > 4/5$ such that

$$\sup_{\theta \in \mathcal{C}_n \cap \mathcal{M}_n \cap [0,1]^n} \frac{1}{n} \mathbb{E}_{\theta} \left(\| \hat{\theta}(Y_1, \dots, Y_n) - \theta \|^2 \right) \leqslant C \cdot n^{-\gamma}$$

for all $n \in \mathbb{N}$? Justify your answer briefly.

[Pinsker's inequality may be used without proof.]

[Hint: For $k \in \mathbb{N}$, $\sum_{\ell=0}^{k-1} \ell^2 (k-1-\ell)^2 = \frac{1}{30} k(k-1)(k-2)(k^2-2k+2).$

]

END OF PAPER

Part III, Paper 210