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1 Sub-Gamma Random Variables
A real-valued random variable X with E[X] = 0 is said to be sub-gamma on the

right tail with variance parameter ν > 0 and scale parameter c > 0 if

ψX(λ) ⩽ λ2ν

2(1− cλ)
for every λ such that 0 < λ < 1/c,

where ψX(λ) = logE[eλX ]. The set of all such random variables is denoted by Γ+(ν, c).

(a) Show that if X ∈ Γ+(ν, c), then Var(X) ⩽ ν.

(b) Suppose X1, . . . , Xn are independent random variables such that Xi ∈ Γ+(νi, ci).
Show that Z =

∑n
i=1Xi satisfies Z ∈ Γ+(ν, c), for suitable values of ν and c that

you should determine.

(c) Let X ∈ Γ+(ν, c). Show that for t > 0, the following right tail bound holds

P(X ⩾ t) ⩽ exp

(
− ν

c2
h

(
ct

ν

))
,

where h is a function that you should determine.

(d) Let X ∈ Γ+(ν, c). Using part (c) or otherwise, show that for all t > 0,

P(X ⩾
√
2νt+ ct) ⩽ e−t.
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2 Han’s Inequality for KL-divergence
Let X be a finite discrete space, and let PX1:n and QX1:n be two measures on X n

such that PX1:n is a product measure; i.e., PX1:n = PX1 ⊗ PX2 ⊗ · · · ⊗ PXn for measures
PXi over X , for 1 ⩽ i ⩽ n.

Let X1:n ∼ PX1:n ; i.e., X1, . . . , Xn are independent random variables such that
Xi ∼ PXi for 1 ⩽ i ⩽ n. Let f : X n → [0,∞) and set Z = f(X1:n). Assume that EZ = 1.

(a) State and prove Han’s inequality for KL-divergence. If you use the chain rule of
KL-divergence, you should prove it. [You may use the convexity of KL-divergence
without proof.]

(b) Assuming Han’s inequality for KL-divergence, state and prove the tensorisation of
entropy theorem for upper-bounding Ent(Z).

(c) Prove the following inequality:

D(QX1:n∥PX1:n) ⩽
1

(n− 1)

n∑

i=1

D(QX(i)|Xi
∥PX(i) |QXi).

[You may use any results from the lectures, provided you state or quote them clearly.]

(d) Assuming the inequality in part (c), derive a new upper bound on Ent(Z). [You
may find it useful to introduce the notation E[i]Z = E[Z|Xi] and Ent[i](Z) =
E[i][Z logZ]− E[i][Z] logE[i][Z].]

(e) Is the upper bound on Ent(Z) derived in part (d) tighter than the one from part
(b)? Justify your answer.
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3 Poisson log-Sobolev inequality

(a) State the Gaussian log-Sobolev inequality. Show that it implies the following
inequality:

Ent(f(X)) ⩽ 2E
[∥∇f(X)∥2

f(X)

]
,

where X ∼ N(0, I) is the standard Gaussian in Rn and f : Rn → (0,∞) is a
continuously differentiable function.

Let f : N → R, and define the discrete derivative of f evaluated at x ∈ N as
Df(x) := f(x+ 1)− f(x).

(b) Let X be a Poisson(λ) random variable; i.e., P(X = i) = e−λ λi

i! for i ∈ N. Consider
the following inequality, which is suggested as a version of the log-Sobolev inequality
for the Poisson measure:

Ent(f(X)2) ⩽ CE
[
|Df(X)|2

]
,

where C > 0 is a constant. Show that the above inequality cannot hold for all
f : N → R, regardless of the choice of C. [Hint: Consider indicator functions of
intervals [k + 1,∞).]

Let ε ∼ Bernoulli(p); i.e. P(ε = 1) = p and P(ε = 0) = 1 − p for some p ∈ (0, 1). The
following inequality is known to hold for all f : {0, 1} → (0,∞):

Ent(f(ε)) ⩽ p(1− p)E
[ |Df(ε)|2

f(ε)

]
. (⋆)

Here, we interpret Df(0) = f(1)− f(0) and Df(1) = f(0)− f(1).

(c) Let X ∼ Poisson(λ) for some λ > 0. Let f : N → (0,∞) be such that for all x ∈ N,
we have 0 < K1 ⩽ f(x) ⩽ K2 and |Df(x)| ⩽ K3, for some constants K1,K2, and
K3.

Using inequality (⋆), prove that

Ent(f(X)) ⩽ λE
[ |Df(X)|2

f(X)

]
. (⋆⋆)

[You may use any results from the lectures, provided you state or quote them
clearly. You may also use the following fact without proof: if ε1, . . . , εn are i.i.d.
Bernoulli(λ/n), then Sn :=

∑n
i=1 εi converges in distribution to a Poisson(λ) random

variable as n→ ∞.]

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Let X ∼ ν be a random variable that takes values in N. Suppose ν satisfies the
following inequality for all f : N → (0,∞):

Ent(f(X)) ⩽ CE
[ |Df(X)|2

f(X)

]
, (⋆ ⋆ ⋆)

for some C > 0. Let g : N → R be a (discrete) 1-Lipschitz function; i.e., |Dg(x)| ⩽ 1
for all x ∈ N (note that g may take negative values). Using inequality (⋆ ⋆ ⋆), show
that for t > 0,

P(g(X)− Eg(X) ⩾ t) ⩽ exp(−ψ∗(t)),

where ψ∗ is the Chernoff-Cramér transform of ψ(λ) = Cλ
2 (e2λ − 1). [You may use

the following fact without proof: if |a| ⩽ λ, then |ea − 1| ⩽ λeλ.]
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4 Convex and concave 1-Lipschitz functions

(a) State the modified log-Sobolev inequality and Talagrand’s one-sided bounded differ-
ences inequality.

Let f : [0, 1]n → R be a convex function whose partial derivatives exist. Let g : [0, 1]n → R
be a concave function whose partial derivatives exist. Suppose that both f and g are 1-
Lipschitz; i.e. ∥∇f(x)∥ ⩽ 1 and ∥∇g(x)∥ ⩽ 1 for all x ∈ [0, 1]n.

Let X1, . . . , Xn be independent random variables supported on [0, 1]. Let Z = f(X1:n)
and W = g(X1:n).

(b) Show that Var(Z) ⩽ 1 and Var(W ) ⩽ 1. [If you use the convex Poincaré inequality,
you should prove it. You may use any other results from the lectures provided you
state or quote them clearly.]

(c) Show that for t > 0, each of the following probabilities is upper-bounded by
e−t2/2: (i) P(Z − EZ ⩾ t); (ii) P(Z − EZ ⩽ −t); (iii) P(W − EW ⩾ t); and
(iv) P(W − EW ⩽ −t). [You may use any results from the lectures, except those
specifically asked for, without proof provided you state or quote them clearly.]

END OF PAPER
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