MAMA/208, NST3AS/208, MAAS/208

MAT3 MATHEMATICAL TRIPOS Part III

Friday 7 June 2024 $\ 1:30~\mathrm{pm}$ to $3:30~\mathrm{pm}$

PAPER 208

CONCENTRATION INEQUALITIES

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Sub-Gamma Random Variables

A real-valued random variable X with $\mathbb{E}[X] = 0$ is said to be sub-gamma on the right tail with variance parameter $\nu > 0$ and scale parameter c > 0 if

$$\psi_X(\lambda) \leqslant \frac{\lambda^2 \nu}{2(1-c\lambda)}$$
 for every λ such that $0 < \lambda < 1/c$,

where $\psi_X(\lambda) = \log \mathbb{E}[e^{\lambda X}]$. The set of all such random variables is denoted by $\Gamma_+(\nu, c)$.

- (a) Show that if $X \in \Gamma_+(\nu, c)$, then $\operatorname{Var}(X) \leq \nu$.
- (b) Suppose X_1, \ldots, X_n are independent random variables such that $X_i \in \Gamma_+(\nu_i, c_i)$. Show that $Z = \sum_{i=1}^n X_i$ satisfies $Z \in \Gamma_+(\nu, c)$, for suitable values of ν and c that you should determine.
- (c) Let $X \in \Gamma_+(\nu, c)$. Show that for t > 0, the following right tail bound holds

$$\mathbb{P}(X \ge t) \le \exp\left(-\frac{\nu}{c^2}h\left(\frac{ct}{\nu}\right)\right),\,$$

where h is a function that you should determine.

(d) Let $X \in \Gamma_+(\nu, c)$. Using part (c) or otherwise, show that for all t > 0,

$$\mathbb{P}(X \ge \sqrt{2\nu t} + ct) \le e^{-t}.$$

2 Han's Inequality for KL-divergence

Let \mathcal{X} be a finite discrete space, and let $P_{X_{1:n}}$ and $Q_{X_{1:n}}$ be two measures on \mathcal{X}^n such that $P_{X_{1:n}}$ is a product measure; i.e., $P_{X_{1:n}} = P_{X_1} \otimes P_{X_2} \otimes \cdots \otimes P_{X_n}$ for measures P_{X_i} over \mathcal{X} , for $1 \leq i \leq n$.

Let $X_{1:n} \sim P_{X_{1:n}}$; i.e., X_1, \ldots, X_n are independent random variables such that $X_i \sim P_{X_i}$ for $1 \leq i \leq n$. Let $f : \mathcal{X}^n \to [0, \infty)$ and set $Z = f(X_{1:n})$. Assume that $\mathbb{E}Z = 1$.

- (a) State and prove *Han's inequality for KL-divergence*. If you use the chain rule of KL-divergence, you should prove it. [You may use the convexity of KL-divergence without proof.]
- (b) Assuming Han's inequality for KL-divergence, state and prove the *tensorisation of* entropy theorem for upper-bounding Ent(Z).
- (c) Prove the following inequality:

$$D(Q_{X_{1:n}} \| P_{X_{1:n}}) \leq \frac{1}{(n-1)} \sum_{i=1}^{n} D(Q_{X^{(i)}|X_i} \| P_{X^{(i)}} | Q_{X_i}).$$

[You may use any results from the lectures, provided you state or quote them clearly.]

- (d) Assuming the inequality in part (c), derive a new upper bound on $\operatorname{Ent}(Z)$. [You may find it useful to introduce the notation $E^{[i]}Z = \mathbb{E}[Z|X_i]$ and $\operatorname{Ent}^{[i]}(Z) = E^{[i]}[Z\log Z] E^{[i]}[Z]\log \mathbb{E}^{[i]}[Z]$.]
- (e) Is the upper bound on Ent(Z) derived in part (d) tighter than the one from part (b)? Justify your answer.

3 Poisson log-Sobolev inequality

(a) State the *Gaussian log-Sobolev inequality*. Show that it implies the following inequality:

$$\operatorname{Ent}(f(X)) \leq 2\mathbb{E}\left[\frac{\|\nabla f(X)\|^2}{f(X)}\right],$$

where $X \sim N(0, I)$ is the standard Gaussian in \mathbb{R}^n and $f : \mathbb{R}^n \to (0, \infty)$ is a continuously differentiable function.

Let $f : \mathbb{N} \to \mathbb{R}$, and define the discrete derivative of f evaluated at $x \in \mathbb{N}$ as Df(x) := f(x+1) - f(x).

(b) Let X be a Poisson(λ) random variable; i.e., $\mathbb{P}(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$ for $i \in \mathbb{N}$. Consider the following inequality, which is suggested as a version of the log-Sobolev inequality for the Poisson measure:

$$\operatorname{Ent}(f(X)^2) \leq C \mathbb{E}\left[|Df(X)|^2\right],$$

where C > 0 is a constant. Show that the above inequality cannot hold for all $f : \mathbb{N} \to \mathbb{R}$, regardless of the choice of C. [*Hint: Consider indicator functions of intervals* $[k + 1, \infty)$.]

Let $\varepsilon \sim \text{Bernoulli}(p)$; i.e. $\mathbb{P}(\varepsilon = 1) = p$ and $\mathbb{P}(\varepsilon = 0) = 1 - p$ for some $p \in (0, 1)$. The following inequality is known to hold for all $f : \{0, 1\} \to (0, \infty)$:

$$\operatorname{Ent}(f(\varepsilon)) \leqslant p(1-p) \mathbb{E}\left[\frac{|Df(\varepsilon)|^2}{f(\varepsilon)}\right].$$
 (*)

Here, we interpret Df(0) = f(1) - f(0) and Df(1) = f(0) - f(1).

(c) Let $X \sim \text{Poisson}(\lambda)$ for some $\lambda > 0$. Let $f : \mathbb{N} \to (0, \infty)$ be such that for all $x \in \mathbb{N}$, we have $0 < K_1 \leq f(x) \leq K_2$ and $|Df(x)| \leq K_3$, for some constants K_1, K_2 , and K_3 .

Using inequality (\star) , prove that

$$\operatorname{Ent}(f(X)) \leq \lambda \mathbb{E}\left[\frac{|Df(X)|^2}{f(X)}\right]. \tag{**}$$

[You may use any results from the lectures, provided you state or quote them clearly. You may also use the following fact without proof: if $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. Bernoulli (λ/n) , then $S_n := \sum_{i=1}^n \varepsilon_i$ converges in distribution to a Poisson (λ) random variable as $n \to \infty$.]

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 208

(d) Let $X \sim \nu$ be a random variable that takes values in \mathbb{N} . Suppose ν satisfies the following inequality for all $f : \mathbb{N} \to (0, \infty)$:

$$\operatorname{Ent}(f(X)) \leqslant C \mathbb{E}\left[\frac{|Df(X)|^2}{f(X)}\right], \qquad (\star \star \star)$$

for some C > 0. Let $g : \mathbb{N} \to \mathbb{R}$ be a (discrete) 1-Lipschitz function; i.e., $|Dg(x)| \leq 1$ for all $x \in \mathbb{N}$ (note that g may take negative values). Using inequality $(\star \star \star)$, show that for t > 0,

$$\mathbb{P}(g(X) - \mathbb{E}g(X) \ge t) \le \exp(-\psi^*(t)),$$

where ψ^* is the Chernoff-Cramér transform of $\psi(\lambda) = \frac{C\lambda}{2}(e^{2\lambda} - 1)$. [You may use the following fact without proof: if $|a| \leq \lambda$, then $|e^a - 1| \leq \lambda e^{\lambda}$.]

4 Convex and concave 1-Lipschitz functions

(a) State the modified log-Sobolev inequality and Talagrand's one-sided bounded differences inequality.

Let $f: [0,1]^n \to \mathbb{R}$ be a *convex* function whose partial derivatives exist. Let $g: [0,1]^n \to \mathbb{R}$ be a *concave* function whose partial derivatives exist. Suppose that both f and g are 1-Lipschitz; i.e. $\|\nabla f(x)\| \leq 1$ and $\|\nabla g(x)\| \leq 1$ for all $x \in [0,1]^n$.

Let X_1, \ldots, X_n be independent random variables supported on [0, 1]. Let $Z = f(X_{1:n})$ and $W = g(X_{1:n})$.

- (b) Show that $Var(Z) \leq 1$ and $Var(W) \leq 1$. [If you use the convex Poincaré inequality, you should prove it. You may use any other results from the lectures provided you state or quote them clearly.]
- (c) Show that for t > 0, each of the following probabilities is upper-bounded by $e^{-t^2/2}$: (i) $\mathbb{P}(Z \mathbb{E}Z \ge t)$; (ii) $\mathbb{P}(Z \mathbb{E}Z \le -t)$; (iii) $\mathbb{P}(W \mathbb{E}W \ge t)$; and (iv) $\mathbb{P}(W \mathbb{E}W \le -t)$. [You may use any results from the lectures, except those specifically asked for, without proof provided you state or quote them clearly.]

END OF PAPER