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1 Statistics in Medical Practice
Over the past n days, there has been a rapid outbreak of a novel respiratory disease. To
understand its potential to spread through the population, estimates of the time-varying
reproduction number are required. Suppose that we can directly observe new infections
(or a fixed fraction of them) as they occur, with daily rate ∆t on day t. A time-since-
infection model is implemented to link ∆t, t = 1, . . . , T to the instantaneous infection rate
βt,τ .

(a) Define the subscripts of the term βt,τ , and write down the discrete-time recursion
linking ∆t and βt,τ .

(b) There are multiple possible definitions of the reproduction number.

(i) Define both the instantaneous and effective reproduction numbers in terms
of the infection rate. Identify which of these reproduction numbers is easier
to estimate in practice.

(ii) Assume separability of the infection rate βt,τ . Obtain the relationship between
the reproduction number chosen in (i) and the discretised generation interval
distribution g = (g1, g2, . . . , ).

(iii) As we are in the early stages of an outbreak, it may be reasonable to assume
that the underlying incidence is growing exponentially with rate ρ. Use your
definition of the reproduction number to establish a relationship between the
time-t reproduction number and the growth rate. If gi = P(X = i−1), where
X ∼ Geometric(p), show that the reproduction number can be expressed as:

1− (1− p) e−ρ

pe−ρ
(
1− (1− p)t e−ρt

)

In practice, the ∆t are unobserved. However, noisy daily counts of the number of people
diagnosed with the novel infection, I1, . . . , IT are available.

(c) Conditional upon the reproduction numbers and the generation interval, these count
data can be assumed to be independent and Poisson-distributed.

(i) Write down a probability model that will give the joint distribution of the It,
t = 1, . . . , T .

(ii) Assume, a priori that the time-t reproduction number has a Γ(α0, β0) prior.
Show that it has posterior mean

Ik + α0

sk + β0

for a suitably defined quantity sk.

[QUESTION CONTINUES ON THE NEXT PAGE]
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A cohort of people who have tested positive for the infection are followed up through
time. We want to estimate the risk of death, and the expected times to death or recovery
(defined as the first time a person would test negative if tested).

(d) Describe a continuous-time multi-state model that could be used to estimate these
quantities, indicating the states and permitted transitions in continuous time, and
defining symbols to represent the model parameters.

(e) Under this model, what is

(i) the probability that an infected person will die,

(ii) the expected time to the first event (either death or recovery)?

People are tested for the infection weekly, and for those who die we record the exact time
of death. We observe the following data for two people.

Person 1 0 days Test positive
7 days Test positive
14 days Test negative

Person 2 0 days Test positive
7 days Test positive
10 days Death

(f) (i) Define the transition probability matrix of a continuous-time multi-state
model.

(ii) Define the contribution to the likelihood of the multi-state model given by
these two people, in terms of the transition probabilities.

(g) Explain an assumption being made in the model used in (d)–(f), and explain why
it is challenging to fit such a model to this sort of data under a less restrictive
assumption.

Suppose we extended the multi-state model to include a state which indicates that an
infected person is in hospital. We have a population of N people, and the chance that a
person gets infected (over some period of time) is p.

(h) Explain how we could estimate the total expected number of days spent in hospital
resulting from infections among this population during this period. (Assume that a
person cannot be infected repeatedly.)
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2 Statistics in Medical Practice
Consider a clinical trial where a new treatment will be tested against a standard

treatment. When treatment k is given to a patient (where k = 0 denotes the standard
treatment and k = 1 the new treatment), a Bernoulli(pk) outcome is observed, where pk
represents the probability of a treatment success. Denote the total number of patients on
treatment k as nk. The parameter of interest is the difference in the treatments’ success
rates δ = p1 − p0 and the null hypothesis H0 : δ = 0 is to be tested.

(a) Define the Wald test statistic and write down its approximate (large-sample) normal
distribution i) under H0 and ii) when δ = δ∗ (where δ∗ > 0).

(b) Assume that equal numbers of patients are allocated to each treatment arm (so that
n0 = n1 = n) and that n is large so that the approximate normal distribution derived
in (a) holds. Derive a formula for the sample size required to detect a clinically
relevant difference δ∗ between the standard treatment and the new treatment, with
power 1− β and a type I error rate of α when using a one-sided Wald test.

(c) The clinical investigator for the trial has heard about group sequential designs and
asks if such a design can reduce the sample size of the trial. What answer would
you give?

(d) Consider redesigning the original trial using a two-stage group sequential design. Let
Zj denote the Wald test statistic at the jth analysis and mj denote the cumulative
group-size per arm. Write down the asymptotic joint distribution of Zj in terms of
δ, pj and mj .

(e) Using the joint distribution of (Z1, Z2), and given lack-of-benefit boundaries (l1, l2)
and efficacy boundaries (u1, u2), derive an expression for the asymptotic probability
of making a type I error.

(f) The clinical investigator has also heard about response-adaptive randomisation
(RAR) and wonders about using RAR instead of a group sequential design. Give
one potential advantage and one potential disadvantage of using RAR in a clinical
trial.

(g) The clinical investigator mentions historical data that suggests p0 = 0.1 and pilot
data suggesting p1 = 0.5. Assuming that these are the true values, calculate the
large-sample variance of the estimated treatment difference p̂1− p̂0 (as in (a)) when
using a RAR design that targets the Neyman ratio (for a fixed total sample size
nmax = n0 + n1), and compare this with the variance achieved when using equal
allocation.
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3 Statistics in Medical Practice
In the figure below, the abundance of a protein in a cell has been plotted as a function of
time over the duration of the cell cycle. Given n = 20 observations of the abundance at
various time points during the cycle, a standard Gaussian process (GP) regression model
was fit to the data according to the model:

yj |f, xj , σ2 = f(xj) + εj , εj
iid∼ N (0, σ2), j = 1, . . . , n (1)

f ∼ GP(0, κ(·, ·)).,

The parameters of the model (kernel hyperparameters and the noise variance) can be
considered fixed throughout the question. In the figure, the original data are plotted
alongside the posterior mean of the GP and a 95% credible band.

(a) Given the observed data y at locations X = {x1, . . . , xn}, derive the predictive
posterior distribution of the GP at an unobserved input x∗, i.e. f(x∗)|y, X, x∗.

Make sure that the dimensions and entries of any vectors or matrices you define are
explicitly specified. [Note that the conditioning property of the multivariate normal
is given at the end of the question.]

(b) For this particular experiment, the researchers are interested in the abundance of
the protein at the midway point of the cell cycle, i.e. f(0.5).

Use the solution arrived at in (a) to find an explicit expression for the posterior
probability that the abundance is below 1.5, i.e. P (f(0.5) < 1.5| y, X).

[QUESTION CONTINUES ON THE NEXT PAGE]
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Consider now an extension of the previous experiment, where we are given the
abundances of 10 different proteins over the course of the cell cycle. The figure below
illustrates that the behaviours of these proteins can be well described by only 3 functions,
which we denote by f1, f2, and f3.
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Each protein is observed at a common, finite set of time points, X = {x1, . . . , xn}, and
we denote by yi = (yi1, . . . , yin)

T the corresponding vector of measured abundances for
the i -th protein. For m = 1, 2, 3, we denote by fm = (fm(x1) . . . , fm(xn))

T the vector
whose entries are given by the m-th function evaluated at each time point. For the i -th
protein, we assume that the measured abundance is generated (noisily) from one of the 3
functions, i.e. yij = fm(xj) + ϵij for some m. Furthermore, we assume that the functions
f1, f2, f3 were drawn iid from a zero-mean GP with kernel κ(·, ·).

We can define a mixture model for our data as follows:

π1, π2, π3|α ∼ Dir(3,α)

f1, f2, f3|x1, . . . , xn iid∼ N (0,K) (2)

y1, . . . ,y10|{πk, fk}3k=1, σ
2 iid∼

3∑

m=1

πmϕ(y; fm, σ2),

where ϕ(y; fm, σ2) = N (fm, σ2I), α = (α1, α2, α3)
T , and K has entries Kij = κ(xi, xj).

[QUESTION CONTINUES ON THE NEXT PAGE]
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(c) Let’s assume for the time being that for each observation yi we are given a
label ci ∈ {1, 2, 3} indicating the function from which it was generated; i.e.
yi|ci = m, {πm, fm}3m=1, σ

2 ∼ ϕ(yi; fm, σ2), where P (ci = m) = πm. We have two
sets of unknown parameters in the model: the mean vectors {fm}3m=1 and mixture
weights {πm}3m=1.

To perform inference in this finite mixture model, we can employ a Gibbs sampler,
where at each iteration, each parameter is sampled from its conditional posterior
distribution given all the other parameters.

(i) Assuming that the vector N = (N1, N2, N3)
T follows a multinomial distri-

bution M3(10;π1, π2, π3), where Nm = |{ci : ci = m}|, find the conditional
posterior distribution for the mixture weights,

p(π1, π2, π3|{yi, ci}10i=1, {fm}3m=1)

(ii) Find the conditional posterior distribution for the vector fm,

p(fm|{yi, ci}10i=1, {πm}3m=1) for m = 1, 2, 3.

Make sure that the dimensions and entries of any vectors or matrices
you define are explicitly specified. [For notational purposes, denote by

y
(m)
1 , . . . ,y

(m)
Nm

, the observations generated by the m-th function (i.e. those
where ci = m).]

Suppose now that we are not given the labels, {ci}10i=1.

(iii) Find the conditional posterior distribution for ci,

P (ci = m|{yi}10i=1, {πm}3m=1, {fm}3m=1).

Finally, suppose we did not know the number of functions in advance.

(iv) Write up a hierarchical model akin to the model in (2) that also takes the
unknown number of functions into account.

Multivariate normal conditioning property Let x =

(
xA

xB

)
be a Gaussian random

variable with mean µ = (µA,µB)
T and covariance matrix Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
. Then the

conditional distribution of xA given xB, is also a Gaussian:

xA|xB ∼ N (µA +ΣABΣ
−1
BB(xB − µB),ΣAA − ΣABΣ

−1
BBΣBA).

Part III, Paper 207 [TURN OVER]



8

4 Analysis of Survival Data

(a) A time-to-event dataset comprises n individuals, the ith either having an event
(vi = 1) or being censored (vi = 0) at time xi, i = 1, . . . , n. There are no ties in
the dataset (that is: for i ̸= i′ and vi = vi′ = 1, xi ̸= xi′).

Each individual belongs to one of two groups, with the group membership of the
ith individual indicated by gi with gi ∈ {0, 1}. The time-to-event distribution is the
same for all individuals in a group. It is required to test whether the time-to-event
distribution for group 0 is the same as that for group 1.

Let aj , j = 1, . . . , m be the set of times at which there is an event, with
0 < aj−1 < aj .

(i) What is meant by a risk set? Write down an expression for the number of

individuals r
(k)
j in the risk set for group k at time aj .

(ii) Let the random variable Uj , j = 1, . . . , m indicate the group membership
of the individual who has an event at time aj . Derive the expectation EUj ,

conditional on the observed r
(0)
j and r

(1)
j , assuming that the time-to-event

distributions of the two groups are equal.

(iii) Interpet the expression uj −EUj where uj is the observed group membership
of the individual having the event at time aj .

(iv) Hence construct a statistic T0 which can be used to test the null hypothesis
that the two groups have the same time-to-event distribution. [You need not
normalize to unit variance.]

(b) Give a brief derivation of the Nelson-Aalen estimator of the integrated hazard
function.

(c) This part of the question refers to the dataset defined in part (a).

(i) What is the Nelson-Aalen estimate Ĥ
(k)
j of the integrated hazard at time aj

for group k?

(ii) Write down an expression for the increment ∆Ĥ
(k)
j at time aj in the estimate

of group k’s integrated hazard, that is: ∆Ĥ
(k)
j = Ĥ

(k)
j −Ĥ

(k)
j−1, with Ĥ

(k)
0 defined

equal to 0.

(iii) A general procedure to obtain a statistic TW to test the equality of two
integrated hazard functions is to construct a weighted sum over the aj of
the difference in the increments in the estimated integrated hazards between
the two groups. that is:

TW =
m∑

j=1

wj

(
∆Ĥ

(1)
j −∆Ĥ

(0)
j

)
.

Derive the form of wj which makes the two test statistics TW and T0 (derived
in part (a)) equivalent.

(iv) Comment on why the weights you have calculated result in a better test
statistic than simply setting wj = 1 for all j.
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5 Analysis of Survival Data

(a) What is meant by a proportional hazards family of time-to-event distributions?

(i) Show that if two continuous time-to-event distributions have survivor func-
tions F1, F2 related by F2(t) = (F1(t))

λ for some λ > 0 then they belong to
the same proportional hazards family.

(ii) Let two time-to-event variables T1, T2 be of form:

log Tk = log ak + b logUk

for k ∈ {1, 2} with ak > 0, b > 0 and Uk a random variable with
exponential(1) distribution. Show that T1, T2 belong to the same pro-
portional hazards family.

For the rest of this question, you may assume a dataset of form {(xi, vi, zi): i = 1, . . . , n}
comprising n individuals: xi being either the time of the observed event (vi = 1) or the
time of censoring (vi = 0) for the ith individual and zi indicating which of two groups
that individual belongs to. The labels i have been allocated to individuals such that the
xi are ordered with no ties: xi′ < xi for i

′ < i.

(b) Describe briefly how you would use a fully parametric proportional hazards model
to test the hypothesis that the two groups have the same time-to-event distribution.

(c) What is a semi-parametric proportional hazards model? What is meant by a partial
likelihood?

(i) Describe carefully how you would use a semi-parametric proportional hazards
model to test the hypothesis that the two groups have the same time-to-event
distribution. [Do not attempt to maximize the partial likelihood.]

(ii) Suppose that n > 3, and that xn−2,xn−1,xn correspond respectively to a
censored observation and two observed events. Let tn−2 denote the actual
(unobserved) event time for the (n− 2)th individual.

Obtain an expression for the partial likelihood for each ordering of

x1, . . . , xn−3, xn−1, xn, tn−2 ,

that could result from the different positions of tn−2 in the sequence

x1, . . . , xn−3, xn−1, xn

which are consistent with the (n− 2)th individual being censored at xn−2.

Show algebraically that the sum of these partial likelihoods is equal to the
partial likelihood calculated with the (n− 2)th individual censored at xn−2.
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6 Analysis of Survival Data

(a) What is meant by empirical likelihood? Explain how to construct a non-parametric
estimate of the survivor function by combining individual contributions to the
empirical likelihood function. What properties of the survivor function can be
used to simplify the maximization of the empirical likelihood function?

Write down the contributions to the empirical likelihood function from the individu-
als described below, explaining carefully your notation:

(i) A patient, taking part in a study of the time interval from randomization into
a study of a new cancer treatment to death, who is still alive when the study
is analysed 36 months after their randomization.

(ii) A patient, taking part in a study of the time interval from randomization into
a study of a new cancer treatment to death, who dies on-study 42 months
after their randomization.

(iii) A chimpanzee, being observed in a study of the time interval from sunrise to
first awakening, who is seen to be already awake when the naturalist arrives
at the study site 15 minutes after sunrise.

(iv) A patient, taking part in a study of the time interval from the diagnosis of a
primary cancer to the first appearance of a secondary cancer, who is observed
to have no secondary cancers 6 months after the diagnosis of the primary
cancer but to have a secondary cancer 9 months after the diagnosis of the
primary cancer.

(v) A bus, being observed in a study of the time interval from scheduled arrival
to actual arrival, which is not seen to arrive by an observer who waits at
the bus stop from 2 minutes after the scheduled time to 20 minutes after the
scheduled time.

(vi) A person, taking part in a study of the time interval from 70th birthday to
death – the study population being the inhabitants of a care home, who starts
living at the care home on their 73rd birthday and dies on their 83rd birthday.

(b) What is meant by a period survival analysis? Describe how to construct a period
survivor function for a specified time period, using – as an illustration – a period
survival analysis for calendar year 2022 of time from diagnosis of a particular cancer
to death from any cause.

Suppose you want to compare two such period survivor functions obtained for 2022
from two different countries. Explain briefly how you would make the comparison:

(i) non-parametrically;

(ii) parametrically, on the assumption that all patients within each country
experienced an identical constant hazard throughout 2022.

END OF PAPER
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