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1 (a) Define a positive definite kernel and a Reproducing Kernel Hilbert Space.

(b) Consider the Gaussian kernel on Rd, gσ(x, y) = e−∥x−y∥2/(2σ2). Prove that there
is no feature map ϕ : Rd → Rp with finite p, such that gσ(x, y) = ϕ(x)Tϕ(y) for all
x, y ∈ Rd. [Hint: Consider the rank of the kernel matrix. A matrix
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with r small enough is strictly diagonally dominant, hence positive definite.]

(c) Show that the function k1(x, y) = (x+y)−1 is a positive definite kernel on (0,∞).

(d) Show that the function

k2(x, y) =
1

1− xT y
∥x∥2+∥y∥2

− 1

for x, y ̸= 0 is a positive definite kernel on the set Rd \ {0}, citing any necessary result
from lectures. You may find the result from part (c) useful.

Deduce that d(x, y) =
√

2− 2k2(x, y) is a metric on this set. [Hint: Consider a
metric in the RKHS.]
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2 Let x1, . . . , xn be i.i.d. N(µ,Σ) random variables with parameters µ ∈ Rp and
Σ ∈ Rp×p. The Graphical Lasso estimator Ω̂ for the precision matrix Σ−1 is the minimiser
over positive definite matrices Ω of the objective

Q(Ω) = − log detΩ + Tr(SΩ) + λ

p∑

i,j=1

|Ωi,j |.

(a) What is the matrix S in the objective?

(b) Derive the Karush–Kuhn–Tucker conditions for the estimator Ω̂, citing any
necessary result from lectures.

(c) Prove that Q(Ω̂) = − log det Ω̂ + p.

(d) Suppose that there is some p0 < p, such that for all i ⩽ p0, j > p0, we have
|Sij | ⩽ λ. Write S blockwise:

S =

[
S(11) S(12)

S(21) S(22)

]
,

where S(11) ∈ Rp0×p0 ; let d1 = p0 and d2 = p− p0.

Show that the Graphical Lasso estimator with parameter λ is

Ω̂ =

[
Ω̂(1) 0

0 Ω̂(2)

]
,

where, for k ∈ {1, 2}, Ω̂(k) minimises the objective

− log detW +Tr(S(kk)W ) + λ

dk∑

i,j=1

|Wi,j |

over positive definite matrices W ∈ Rdk×dk .
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3 Consider a linear model Y = Xβ0 + ε − ε1, where the design matrix X ∈ Rn×p

has centred columns with ℓ2-norm
√
n. We assume that ε1, . . . , εn are i.i.d. with

P(ε1 = 1) = P(ε1 = −1) = 1/2. Let S := {j ∈ {1, . . . , p} : β0
j ̸= 0} be the set of

non-zero entries in β0, and N := {1, . . . , p} \ S be its complement.

(a) Letting β̂ be the Lasso estimator with regularisation parameter λ, prove the
basic inequality :

1

n
∥X(β0 − β̂)∥22 ⩽

1

n
(β̂ − β0)TXT ε+ λ∥β0∥1 − λ∥β̂∥1.

(b) Show that, on the event Ω := {∥XT ε∥∞/n ⩽ λ/2}, we have

∥β̂N − β0
N∥1 ⩽ 3∥β̂S − β0

S∥1.

(c) Let λ = A
√

log(p)/n for some constant A > 0. Prove a lower bound on P(Ω) in
terms of p and A, giving conditions on A under which P(Ω) → 1 as p → ∞. [You may cite
Hoeffding’s lemma and basic properties of sub-Gaussian random variables without proof.]

(d) Now suppose that X satisfies the γ-restricted eigenvalue condition:

inf
δ∈Rp:δ ̸=0,∥δN∥1⩽3∥δS∥1

1
nδ

TXTXδ

∥δ∥22
> γ,

for some constant γ > 0. Prove that, on the event Ω,

∥β̂ − β0∥2 ⩽
3λ

√
|S|

2γ
.
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4 Consider the linear model

Y = Xβ0 + ε− ε1,

where the design matrix X ∈ Rn×p has centred columns with ℓ2-norm
√
n and compatib-

ility factor ϕ2 > 0, and suppose that ε ∼ Nn(0, σ
2I).

(a) Define the square-root Lasso estimator with regularisation parameter γ.

(b) Define an approximate test of size α for the null hypothesis Hβ
j : β0

j = 0. State

without proof conditions on γ, n, p, and s := |{j : β0
j ̸= 0}| under which the size tends to

α as n → ∞.

Suppose we observe a second response vector,

Z = Xη0 + ξ − ξ1,

where ξ ∼ Nn(0, v
2I). We wish to estimate the set of coefficients which are non-zero for

both β0 and η0:
B := {j : β0

j ̸= 0} ∩ {j : η0j ̸= 0}.

Let qβj be the p-value for a test of the null hypothesis Hβ
j : β0

j = 0. Let qηj be the p-value

in a similar test for the null hypothesis Hη
j : η0j = 0. In the following parts, you may

assume that these tests have exact size α. Define

qj = max{qβj , q
η
j } for j = 1, . . . , p.

(c) Show that the test which rejects the null hypothesis H0 : B = ∅ when
minpj=1 qj ⩽ α/p has size at most α.

(d) Let τ be a permutation of {1, . . . , p} such that qτ(1) ⩽ qτ(2) ⩽ . . . ⩽ qτ(p). We

estimate B with the set B̂ = {τ(1), . . . , τ(k)}, where

k := min

{
1 ⩽ j ⩽ p : qτ(j) >

α

(p− j + 1)

}
− 1,

and B̂ = ∅ if k = 0. Prove that the probability that B̂ contains an element which is not
in B is smaller or equal to α.
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5 Consider the model Yi = f0(xi)+ εi where xi ∈ Rp for i = 1, . . . , n, ε ∼ Nn(0, σ
2I),

and f0 lies in a reproducing kernel Hilbert space H with reproducing kernel k.

(a) Define the kernel ridge regression estimator f̂λ and, applying the representer
theorem, derive an expression for the fitted values Ŷ = (f̂λ(x1), . . . , f̂λ(xn))

T .

(b) Consider the leave-one-out cross-validation estimator

T̂λ =
1

n

n∑

i=1

(Yi − f̂λ,−i(xi))
2,

where f̂λ,−i denotes the ridge regression estimator fitted to all the samples except (xi, Yi).

We wish to compute T̂λ for all values of λ in the set {λ1, . . . , λL}. Describe an algorithm to
do this in O(n3+Ln2) iterations. [Hint: Recall the formula for blockwise matrix inversion:

[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
].

END OF PAPER
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