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1

(a) For a compact H-hull A ⊆ H, define its mapping-out function gA and its half-plane
capacity hcap(A). Show that hcap(λA+ x) = λ2 hcap(A) for λ > 0 and x ∈ R.

(b) (i) Show that there exists c > 0 such that hcap(A) ⩽ cdiam(A)2 for every
compact H-hull A.

(ii) Find a sequence of compact H-hulls such that hcap(An) → 0 but diam(An) ↛
0. [You may use that as y → ∞, the probability that a two-dimensional
Brownian motion starting at iy exits H \ D on ∂D is comparable to y−1.]

(c) Let θ ∈ ]0, π[, and let a be the half-plane capacity of the straight line segment
{reiθ | r ∈ ]0, 1]}. Find the half-plane capacity parametrisation of the ray
{reiθ | r > 0}. That is, find r(t) such that if γ(t) = r(t)eiθ, then hcap(γ([0, t])) = 2t
for t ⩾ 0. [You do not need to specify the exact value of a.]

(d) Let (Kt) be the family of hulls generated by γ, i.e. Kt = γ([0, t]). Show that there
exists c ∈ R such that the driving function of (Kt) is Ut = c

√
t. [You may assume

that (Kt) has the local growth property.]

2

(a) State and prove the scaling invariance and the conformal Markov property of SLEκ

in (H, 0,∞). [You may use any deterministic properties of Loewner chains.]

(b) Let (gt)t⩾0 be the SLEκ Loewner chain driven by Ut =
√
κBt where B is a standard

Brownian motion. For T > 0, let (hs)s∈[0,T ] be defined by

∂shs(z) =
−2

hs(z)− (UT−s − UT )
, h0(z) = z

where z ∈ H. Show that hT (z) = g−1
T (UT + z) − UT . Is it true that hs(z) =

g−1
s (Us + z)− Us for s ∈ ]0, T [?

(c) Suppose that κ > 8. Show that there exists a deterministic α > 0 and a random
variable C such that |h′T (x + iy)| ⩽ Cy−1+α for all x ∈ [−1, 1], y ∈ ]0, 1].
[You may use that if z ∈ H and Xs + iYs = hs(z) − (UT−s − UT ), then Ms =
|h′s(z)|2(1 +X2

s /Y
2
s )

4/κ is a martingale for s ∈ [0, T ].]

(d) Deduce (for κ > 8) that the map hT is almost surely Hölder-continuous on
[−1, 1]× ]0, 1].
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3 Let 1 < d < 2, and B be a standard Brownian motion. Suppose

x > 0 > y

and we have two processes X,Y satisfying

Xt = x+Bt +
d− 1

2

∫ t

0

1

Xs
ds, t < τx = inf{s > 0 | Xs = 0},

Yt = y +Bt +
d− 1

2

∫ t

0

1

Ys
ds, t < τy = inf{s > 0 | Ys = 0}.

The goal of this question will be to compute the probability P[τx > τy]. [You may assume
that τx < ∞ and τy < ∞ almost surely.]

(a) Explain what the probability P[τx > τy] means in term of hitting events of an SLEκ

trace.

(b) Explain why P[τx > τy] depends only on the ratio x/y.

(c) For v = x/y < 0, define F (v) = F (x/y) = P[τx > τy]. Consider the process
Vt = Xt/Yt for t < τx ∧ τy. You may use that

dVt = (1− Vt)
dBt

Yt
+ (

d− 1

2

1

Vt
+

3− d

2
Vt − 1)

dt

Y 2
t

.

Assuming that the function F is C2, show that it satisfies

F ′′(v) +
(
d− 1

v
+

2d− 4

1− v

)
F ′(v) = 0 for v < 0. (1)

[You may use that d−1
v(1−v)2

+ (3−d)v
(1−v)2

− 2
(1−v)2

= d−1
v + 2d−4

1−v .]

(d) We now define

F̃ (v) =

∫ 0

v

du

(−u)d−1(1− u)4−2d

and note that it is C2 and satisfies (1). [You do not need to verify this.] What can
you say about the process F̃ (Vt) for t < τx ∧ τy? Conclude that F (v) = cF̃ (v) for
some constant c > 0.
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4 Let M denote the set of finite Borel measures ρ on the unit disc D with∫∫
DGD(x, y)ρ(dx)ρ(dy) < ∞ where GD is the zero-boundary Green’s function on D.

(a) Define the zero-boundary Gaussian free field on D as a stochastic process
((h, ρ))ρ∈M. State the domain Markov property of the Gaussian free field.

(b) For t ⩾ 0, let ρt be the uniform measure on ∂B(0, e−t), and define the process
Xt = (h, ρt). [You do not need to check that ρt ∈ M. You may further use that the
process (Xt) has a version that is continuous.]
Now let

h = hD\B(0,e−t) + h
D\B(0,e−t)
B(0,e−t)

be as in the domain Markov decomposition of h. Explain why (hD\B(0,e−t), ρs) =
hD\B(0,e−t)(0) for every s > t.

(c) Show that for s > t, the increment Xs − Xt is independent of hD\B(0,e−t) and has
the same law as Xs−t.

(d) Deduce that the process (Xt) has independent and Gaussian stationary increments.
Conclude that its law is that of a multiple of a standard Brownian motion.

END OF PAPER
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