MAMA/203, NST3AS/203, MAAS/203

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday 11 June 2024 $\quad 1{:}30~\mathrm{pm}$ to $3{:}30~\mathrm{pm}$

PAPER 203

SCHRAMM-LOEWNER EVOLUTIONS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (a) For a compact \mathbb{H} -hull $A \subseteq \mathbb{H}$, define its mapping-out function g_A and its half-plane capacity hcap(A). Show that hcap $(\lambda A + x) = \lambda^2 hcap(A)$ for $\lambda > 0$ and $x \in \mathbb{R}$.
- (b) (i) Show that there exists c > 0 such that $hcap(A) \leq c \operatorname{diam}(A)^2$ for every compact \mathbb{H} -hull A.
 - (ii) Find a sequence of compact \mathbb{H} -hulls such that $hcap(A_n) \to 0$ but $diam(A_n) \not \to 0$. (*You may use that as* $y \to \infty$, the probability that a two-dimensional Brownian motion starting at iy exits $\mathbb{H} \setminus \mathbb{D}$ on $\partial \mathbb{D}$ is comparable to y^{-1} .)
- (c) Let $\theta \in [0, \pi[$, and let *a* be the half-plane capacity of the straight line segment $\{re^{i\theta} \mid r \in [0, 1]\}$. Find the half-plane capacity parametrisation of the ray $\{re^{i\theta} \mid r > 0\}$. That is, find r(t) such that if $\gamma(t) = r(t)e^{i\theta}$, then hcap $(\gamma([0, t])) = 2t$ for $t \ge 0$. [You do not need to specify the exact value of a.]
- (d) Let (K_t) be the family of hulls generated by γ , i.e. $K_t = \gamma([0, t])$. Show that there exists $c \in \mathbb{R}$ such that the driving function of (K_t) is $U_t = c\sqrt{t}$. [You may assume that (K_t) has the local growth property.]

$\mathbf{2}$

- (a) State and prove the scaling invariance and the conformal Markov property of SLE_{κ} in $(\mathbb{H}, 0, \infty)$. [You may use any deterministic properties of Loewner chains.]
- (b) Let $(g_t)_{t\geq 0}$ be the SLE_{κ} Loewner chain driven by $U_t = \sqrt{\kappa}B_t$ where B is a standard Brownian motion. For T > 0, let $(h_s)_{s \in [0,T]}$ be defined by

$$\partial_s h_s(z) = \frac{-2}{h_s(z) - (U_{T-s} - U_T)}, \quad h_0(z) = z$$

where $z \in \mathbb{H}$. Show that $h_T(z) = g_T^{-1}(U_T + z) - U_T$. Is it true that $h_s(z) = g_s^{-1}(U_s + z) - U_s$ for $s \in [0, T]$?

- (c) Suppose that $\kappa > 8$. Show that there exists a deterministic $\alpha > 0$ and a random variable C such that $|h'_T(x + iy)| \leq Cy^{-1+\alpha}$ for all $x \in [-1,1], y \in [0,1]$. [You may use that if $z \in \mathbb{H}$ and $X_s + iY_s = h_s(z) - (U_{T-s} - U_T)$, then $M_s = |h'_s(z)|^2 (1 + X_s^2/Y_s^2)^{4/\kappa}$ is a martingale for $s \in [0,T]$.]
- (d) Deduce (for $\kappa > 8$) that the map h_T is almost surely Hölder-continuous on $[-1,1] \times]0,1]$.

3 Let 1 < d < 2, and B be a standard Brownian motion. Suppose

and we have two processes X, Y satisfying

$$\begin{aligned} X_t &= x + B_t + \frac{d-1}{2} \int_0^t \frac{1}{X_s} \, ds, \qquad t < \tau_x = \inf\{s > 0 \mid X_s = 0\}, \\ Y_t &= y + B_t + \frac{d-1}{2} \int_0^t \frac{1}{Y_s} \, ds, \qquad t < \tau_y = \inf\{s > 0 \mid Y_s = 0\}. \end{aligned}$$

The goal of this question will be to compute the probability $\mathbb{P}[\tau_x > \tau_y]$. [You may assume that $\tau_x < \infty$ and $\tau_y < \infty$ almost surely.]

- (a) Explain what the probability $\mathbb{P}[\tau_x > \tau_y]$ means in term of hitting events of an SLE_{κ} trace.
- (b) Explain why $\mathbb{P}[\tau_x > \tau_y]$ depends only on the ratio x/y.
- (c) For v = x/y < 0, define $F(v) = F(x/y) = \mathbb{P}[\tau_x > \tau_y]$. Consider the process $V_t = X_t/Y_t$ for $t < \tau_x \wedge \tau_y$. You may use that

$$dV_t = (1 - V_t)\frac{dB_t}{Y_t} + (\frac{d-1}{2}\frac{1}{V_t} + \frac{3-d}{2}V_t - 1)\frac{dt}{Y_t^2}.$$

Assuming that the function F is C^2 , show that it satisfies

$$F''(v) + \left(\frac{d-1}{v} + \frac{2d-4}{1-v}\right)F'(v) = 0 \quad \text{for } v < 0.$$
(1)

[You may use that $\frac{d-1}{v(1-v)^2} + \frac{(3-d)v}{(1-v)^2} - \frac{2}{(1-v)^2} = \frac{d-1}{v} + \frac{2d-4}{1-v}$.]

(d) We now define

$$\widetilde{F}(v) = \int_{v}^{0} \frac{du}{(-u)^{d-1}(1-u)^{4-2d}}$$

and note that it is C^2 and satisfies (1). [You do not need to verify this.] What can you say about the process $\widetilde{F}(V_t)$ for $t < \tau_x \wedge \tau_y$? Conclude that $F(v) = c\widetilde{F}(v)$ for some constant c > 0.

Part III, Paper 203

4 Let \mathcal{M} denote the set of finite Borel measures ρ on the unit disc \mathbb{D} with $\iint_{\mathbb{D}} G_{\mathbb{D}}(x,y)\rho(dx)\rho(dy) < \infty$ where $G_{\mathbb{D}}$ is the zero-boundary Green's function on \mathbb{D} .

- (a) Define the zero-boundary Gaussian free field on \mathbb{D} as a stochastic process $((h, \rho))_{\rho \in \mathcal{M}}$. State the domain Markov property of the Gaussian free field.
- (b) For $t \ge 0$, let ρ_t be the uniform measure on $\partial B(0, e^{-t})$, and define the process $X_t = (h, \rho_t)$. [You do not need to check that $\rho_t \in \mathcal{M}$. You may further use that the process (X_t) has a version that is continuous.] Now let

$$h = h_{\mathbb{D} \setminus B(0,e^{-t})} + h_{B(0,e^{-t})}^{\mathbb{D} \setminus B(0,e^{-t})}$$

be as in the domain Markov decomposition of h. Explain why $(h_{\mathbb{D}\setminus B(0,e^{-t})},\rho_s) = h_{\mathbb{D}\setminus B(0,e^{-t})}(0)$ for every s > t.

- (c) Show that for s > t, the increment $X_s X_t$ is independent of $h_{\mathbb{D}\setminus B(0,e^{-t})}$ and has the same law as X_{s-t} .
- (d) Deduce that the process (X_t) has independent and Gaussian stationary increments. Conclude that its law is that of a multiple of a standard Brownian motion.

END OF PAPER