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(a) Let β be a standard Brownian motion and let

Bt =

∫ t

0
sign(βs)dβs.

(i) Show that B is a standard Brownian motion.

(ii) Show that Bt and βt are uncorrelated for each t > 0.

(iii) Prove or disprove: Bt and βt are independent for each t > 0. [Hint: consider
β2
t .]

(b) (i) State the Dubins-Schwarz theorem.

(ii) Let B be a standard Brownian motion and let H be a locally bounded previsible
process such that

∫∞
0 H2

sds = ∞ a.s. Let τ = inf{t ⩾ 0 :
∫ t
0 H

2
udu = 1}. Identify

the distribution of
∫ τ
0 HudBu.

(iii) Suppose that M ∈ Mc,loc and let Bs = Mτs where τs = inf{t ⩾ 0 : [M ]t > s}.
Prove or disprove: B is independent of [M ].

(c) Suppose that B1, B2 are independent standard Brownian motions. Express the
distribution of

∫ t
0 B

1
sdB

2
s +

∫ t
0 B

2
sdB

1
s in terms of N(0, 1) random variables.
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(a) Explain what it means for a cadlag process to be of finite variation and give the
definition of ucp convergence.

(b) Suppose that M,N ∈ Mc,loc and let V be the total variation process for [M,N ].

(i) For each t ⩾ 0, let

Ṽ n
t =

⌈2nt⌉−1∑

k=0

|M(k+1)2−n −Mk2−n ||N(k+1)2−n −Nk2−n |.

Prove that there exists a continuous process Ṽ so that Ṽ n → Ṽ ucp as n → ∞.

(ii) Prove that Vt ⩽ Ṽt for all t ⩾ 0.

(iii) Prove that Vt ⩽ [M ]
1/2
t [N ]

1/2
t for all t ⩾ 0.

(c) Suppose that M ∈ M2
c and H ∈ L2(M). Suppose that N ∈ M2

c and assume that

[N,K]t =

∫ t

0
Hsd[M,K]s for all K ∈ M2

c .

(i) Show that E[N∞K∞] = E[[N,K]∞] and E[(H ·M)∞K∞] = E[[H ·M,K]∞] for
all K ∈ M2

c .

(ii) Show that N = H ·M .

[You may use results from lectures provided you state them clearly.]
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(a) Suppose that M ∈ Mc with M0 = 0 and assume further that M is a Gaussian process.

(i) Prove that for every s, t > 0 we have that Mt+s − Mt is independent of
Ft = σ(Mr : 0 ⩽ r ⩽ t).

(ii) Show that there exists a (deterministic) continuous function f : [0,∞) → [0,∞)
so that [M ]t = f(t) for all t ⩾ 0.

(b) Prove or disprove: if X is a continuous Gaussian process with E[Xt] = 0 for all t then
X ∈ Mc.

(c) Prove or disprove: if M ∈ Mc and there exists a deterministic continuous function so
that [M ]t = f(t) for all t ⩾ 0 then M is a Gaussian process.

(d) (i) Suppose that B is a standard Brownian motion in R2 with |B0| = r ∈ (0,∞).
Fix 0 < r1 < r < r2 and let τ = inf{t ⩾ 0 : |Bt| /∈ (r1, r2)}. Prove that

P[|Bτ | = r1] =
log r2 − log r

log r2 − log r1
.

[You may use without proof that ∆ log |z| = 0 for all z ∈ R2 \ {0}.]
(ii) Prove or disprove: there exists a continuous function u on {(x, y) ∈ R2 : |(x, y)| ⩽

1} such that





∆u = 0 on {(x, y) ∈ R2 : 0 < |(x, y)| < 1}
u = 0 on {(x, y) ∈ R2 : |(x, y)| = 1}, and

u((0, 0)) = 1.
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4 Fix δ ∈ R. Recall that the Bessel SDE is given by

dXt =
δ − 1

2Xt
dt+ dBt, X0 = x. (1)

Assume that δ ⩾ 1 and B is a standard Brownian motion.

(a) Let Yt = |Bt|δ. Suppose that τ is a finite stopping time for B so that Bτ ̸= 0 a.s. and
σ = inf{t ⩾ τ : Bt = 0}. Explain why

dYt = δY
(δ−1)/δ
t dBt +

δ(δ − 1)

2
Y

(δ−2)/δ
t dt for t ∈ [τ, σ].

(b) For each s ⩾ 0, let τs = inf{t ⩾ 0 :
∫ t
0 δ

2Y
2(δ−1)/δ
u du = s}. Explain why τs is strictly

increasing and τs < ∞ a.s. for each s ⩾ 0.

(c) Let Xs = Yτs and show that Xs is continuous.

(d) Let τ be a finite stopping time for X so that Xτ ̸= 0 a.s. and let σ = inf{t ⩾ τ : Xt =
0}. Show that there exists a standard Brownian motion B̃ so that

dXt =
δ − 1

2Xt
dt+ dB̃t for t ∈ [τ, σ].

(e) Compare the solution to (1) constructed in the previous parts to the solution
constructed from the maximal local existence theorem from the course.

(f) Show that {t ⩾ 0 : Xt = 0} has zero Lebesgue measure a.s.
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(a) (i) Suppose that P, P̃ are probability measures. Explain what it means for P to be
absolutely continuous with respect to P̃.

(ii) Define the stochastic exponential Z = E(M) of M ∈ Mc,loc with M0 = 0.

(iii) State Girsanov’s theorem.

(b) Suppose that 0 < T < ∞ and b : R → R is a bounded, continuous function. Prove
that the SDE

dXt = b(Xt)dt+ dBt for t ∈ [0, T ]

has a weak solution and satisfies uniqueness in law.

(c) Suppose that B is a standard Brownian. In each of the following, prove or disprove
that the law of B̃|[0,1] is absolutely continuous with respect to the law of B|[0,1].

(i) B̃t = B2t for each t ⩾ 0.

(ii) Suppose that f ∈ C1 with f(0) = 0 and B̃t = Bt + f(t) for each t ⩾ 0.

(iii) Suppose that f : [0,∞) → R is continuous with f(0) = 0 and B̃t = Bt + f(t) for
each t ⩾ 0.

[You may use without proof the precise Hölder regularity of B provided you state it
clearly.]
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6 Let B be a standard Brownian motion and let Ex denote the expectation with
respect to the probability measure under which B0 = x.

(a) Suppose that f : [0,∞) → R is a bounded continuous function and that u ∈
C1,2((0,∞) × (0,∞)) ∩ C([0,∞) × [0,∞)) and for some C ∈ (0,∞) (deterministic)
satisfies





∂u
∂t = 1

2
∂2u
∂x2 on (0,∞)× (0,∞),

u(0, x) = f(x) for x ∈ (0,∞),

limx→0+
∂u
∂x(t, x) = 0 for t ∈ (0,∞),

|u(t, x)| ⩽ CeCx for (t, x) ∈ (0,∞)× (0,∞).

(1)

Show that
u(t, x) = Ex[f(|Bt|)] for (t, x) ∈ (0,∞)× (0,∞).

[You may assume without proof that the function (0,∞) × R → R defined by
(s, x) 7→ u(s, |x|) is in C1,2((0,∞)×R).]

(b) Suppose that we have the setting of part (a) and we set v(t, x) = Ex[f(|Bt|)]. Show
that v ∈ C1,2((0,∞)× (0,∞)) ∩ C([0,∞)× [0,∞)) and satisfies (1).

(c) Suppose that f1, f2 : (0,∞) → R and b : (0, 1) → R are bounded continuous functions
and suppose that u ∈ C1,2((0,∞)× (0, 1)) ∩ C([0,∞)× [0, 1]) satisfies





∂u
∂t = 1

2
∂2u
∂x2 on (0,∞)× (0, 1),

u(0, x) = g(x) for x ∈ (0, 1),

u(t, 0) = f1(t) for t ∈ (0,∞),

u(t, 1) = f2(t) for t ∈ (0,∞).

For each r ∈ R let τr = inf{t ⩾ 0 : Bt = r}. Show that

u(t, x) = Ex[g(Bt)1{t<τ0∧τ1} + f1(t− τ0)1{τ0<t∧τ1} + f2(t− τ1)1{τ1<t∧τ0}].

END OF PAPER
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