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1 Let (Xi)i be an i.i.d. sequence of random variables with P(Xi = 1) = 1 −
P(Xi = −1) = 1/2. Let S0 = 0, and for n ⩾ 1, define

Sn =
n∑

i=1

Xi.

(a) Show that if T is a stopping time of finite mean, then

E
[
S2
T

]
= E[T ] .

[Hint: You may wish to use the L2 convergence theorem for (Sn∧T )n⩾0.]

Is this equality of means true when T has infinite mean? Justify your answer.

(b) For c > 0, we define Tc = inf{n ⩾ 0 : |Sn|2 > c2n}. Show that Tc is finite almost
surely.

(c) For c > 1, find E[Tc].
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2 (a) Define the notions of weak convergence for probability measures and random
variables.

(b) A sequence of probability measures (µn) in R is said to converge to the
probability measure µ in total variation if

sup
A∈B(R)

|µn(A)− µ(A)| → 0 as n → ∞.

Show that total variation convergence implies weak convergence. Does the converse hold?
Justify your answer.

(c) Let (Xn)n∈N and X be random variables satisfying for some C > 0,

∀ n |Xn| ⩽ C and |X| ⩽ C.

Show that the following two statements are equivalent:

(i) Xn converges weakly to X, and

(ii) E
[
Xk

n

]
→ E

[
Xk

]
as n → ∞ for all k ∈ N.

[Hint: You may use without proof the Weierstrass approximation theorem:
given f a continuous function on [a, b], for every ϵ > 0, there exists a
polynomial P such that supx∈[a,b] |f(x)− P (x)| ⩽ ϵ.]

(d) Let M,M ′ be two metric spaces, and let f : M → M ′ be a measurable function.
Suppose that (Xn) and X are random variables with values in M . Let Df be the set of
discontinuity points of f . Show that if P(X ∈ Df ) = 0 and (Xn) converges weakly to X,
then (f(Xn)) also converges weakly to f(X) as n → ∞.

[Throughout this question you may use results from the course provided they are
stated clearly.]
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3 Let (Bt) be a two dimensional Brownian motion. For a > 0, define

Ta = inf{t ⩾ 0 : |Bt| = a}.

(a) Suppose that B0 = x and 0 < r < R satisfy r < |x| < R. Show that

P(Tr < TR) =
logR− log |x|
logR− log r

.

(b) Suppose now that B0 = 0. Let 0 < r1 < r2, and define stopping times τ0 = 0
and

τ2k+i = inf{t ⩾ τ2k+i−1 : |Bt| = ri} for integers k ⩾ 0 and i ∈ {1, 2}.

For any R > r2, let

N(R) = sup

{
k ∈ N : sup

0⩽t⩽τ2k

|Bt| < R

}
.

Show that
N(R)

logR
→ Y in distribution as R → ∞,

where Y is an exponential random variable of parameter log(r2/r1).

[Throughout this question you may use results from the course as long as they are
stated clearly.]

4 (a) State Donsker’s invariance principle in one dimension.

(b) Let B be a one dimensional Brownian motion. Let µ > 0, and consider

B̃t = Bt − µt for t ⩾ 0 and S = sup
s⩾0

B̃s.

(i) Show that limt→∞ B̃t = −∞ almost surely.

(ii) Show that for x, y > 0,

P(S ⩾ x+ y) = P(S ⩾ x)P(S ⩾ y) .

(iii) Let Tx = inf{t ⩾ 0 : Bt = x}. It is known that for every λ > 0 and x > 0,

we have E
[
e−λTx

]
= e−

√
2λx. You may use this fact without proof. Deduce

that S has the exponential distribution with parameter 2µ.

[Throughout this question you may use without proof that a continuous random
variable with the property of part (ii) has the exponential distribution. You may use
standard properties of Brownian motion without proof.]
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5 Let (Bt)t⩾0 be a two dimensional Brownian motion. For every a > 0, write
τa,r = inf{t ⩾ 0 : |Bt − a| = r}. For every x ∈ R2 and r > 0, we denote by νx,r the
uniform measure on {y : |y − x| = r}.

Let a = (−1, 0) and 0 < r1 < r2 be such that B(a, r1) ⊂ B(0, r2). The goal of this
question is to show that if B0 ∼ ν0,r2 , then Bτa,r1

∼ νa,r1 , i.e. starting the Brownian motion
uniformly from {y : |y| = r2}, the first hitting point of B(a, r1) is uniformly distributed.

(a) Let 0 < r < R. Show that if B0 ∼ ν0,R, then

Bτ0,r ∼ ν0,r.

(b) Let R > 2r2, and let x, y be such that |x| = |y| = R. Let L be the
line passing through the origin perpendicular to the line passing through x and y and
TL = inf{t ⩾ 0 : Bt ∈ L}. Show that if A ⊆ {z : |z − a| ⩽ r1} is a Borel set, then

|Px

(
Bτa,r1

∈ A
)
− Py

(
Bτa,r1

∈ A
)
| ⩽ Px(τa,r1 < TL) .

[Hint: You may wish to couple the Brownian motions starting from x and y as follows: let
ϕ be the reflection with respect to the line L. Define B′

t = ϕ(Bt) for t ⩽ TL and B′
t = Bt

for t > TL.]

(c) Show that for every ε > 0, there exists R > 0 sufficiently large so that for every
Borel set A ⊆ {z : |z − a| ⩽ r1},

|Pνa,R

(
Bτa,1 ∈ A

)
− Pν0,R

(
Bτa,1 ∈ A

)
| ⩽ ε.

(d) Conclude that if B0 ∼ ν0,r2 , then Bτa,r1
∼ νa,r1 .

[Throughout this question you may use results from the course provided they are
stated clearly.]
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(a) State the martingale convergence theorem for a uniformly integrable martingale.

(b) LetX be a discrete time uniformly integrable martingale. Let S ⩽ T be stopping
times. Show that

E[XT ] = E[XS ] .

(c) Let X be a discrete time martingale with values in Z. Suppose that X0 = x > 0
and for every n, we have |Xn+1−Xn| ⩽ 1 and P(|Xn+1 −Xn| = 1 | σ(X0, . . . , Xn)) ⩾ 1/2.
For every a ∈ Z, set

Ta = inf{n ⩾ 0 : Xn = a}.
For every y > x, show that

P(Ty < T0) =
x

y
.

END OF PAPER
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