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1 Let (X;); be an ii.d. sequence of random variables with P(X; =1) = 1 —
P(X; =—1) =1/2. Let Sp =0, and for n > 1, define

S, = ZX
=1

(a) Show that if T" is a stopping time of finite mean, then
E[S7] = E[T].
[Hint: You may wish to use the L? convergence theorem for (Spat)n>0-]

Is this equality of means true when 7" has infinite mean? Justify your answer.

(b) For ¢ > 0, we define T, = inf{n > 0: [S,|?> > ¢?>n}. Show that T is finite almost
surely.

(c) For ¢ > 1, find E[T¢].
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2 (a) Define the notions of weak convergence for probability measures and random
variables.

(b) A sequence of probability measures (u,) in R is said to converge to the
probability measure p in total variation if

sup |un(A) — pu(A) =0 as n— .
A€EB(R)

Show that total variation convergence implies weak convergence. Does the converse hold?
Justify your answer.

(c) Let (X,,)nen and X be random variables satisfying for some C' > 0,
Vn |X,|<C and [X|<C.

Show that the following two statements are equivalent:

(i) X, converges weakly to X, and
(i) E[X}] — E[X*] as n — oo for all k € N.

[Hint: You may use without proof the Weierstrass approximation theorem:
given [ a continuous function on [a,b], for every ¢ > 0, there exists a
polynomial P such that supgejqp | f(2) — P(x)] < €]

(d) Let M, M’ be two metric spaces, and let f : M — M’ be a measurable function.
Suppose that (X,,) and X are random variables with values in M. Let Dy be the set of
discontinuity points of f. Show that if P(X € Dy) = 0 and (X,,) converges weakly to X,
then (f(X,,)) also converges weakly to f(X) as n — oo.

[Throughout this question you may use results from the course provided they are
stated clearly.]
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3 Let (B;) be a two dimensional Brownian motion. For a > 0, define

To =inf{t > 0:|B¢| = a}.

(a) Suppose that By =z and 0 < r < R satisfy r < |z| < R. Show that

log R — log |z|
P(T, <TRp) = ——F——.
(T < Tg) log R — logr

(b) Suppose now that By = 0. Let 0 < r; < ry, and define stopping times 79 = 0
and

Tok+i = Inf{t > mop4i—1 : |By| =ri} for integers k >0 and i€ {1,2}.

For any R > ro, let
N(R) :sup{k eN: sup |Bi < R}.

0<t<Top

Show that
N(R)

log R

where Y is an exponential random variable of parameter log(ra/71).

— Y in distribution as R — oo,

[Throughout this question you may use results from the course as long as they are
stated clearly.]

4 (a) State Donsker’s invariance principle in one dimension.

(b) Let B be a one dimensional Brownian motion. Let ¢ > 0, and consider

Et:Bt—,ut for t >0 and S:supgs.

s=0

(i) Show that lim; B; = —oo almost surely.

(ii) Show that for z,y > 0,

PS>z +y) =P(S>z)P(S >y).

(iii) Let T, = inf{t > 0 : By = z}. It is known that for every A > 0 and x > 0,
we have E [e‘ATI] = e V2 You may use this fact without proof. Deduce
that S has the exponential distribution with parameter 2.

[Throughout this question you may use without proof that a continuous random
variable with the property of part (ii) has the exponential distribution. You may use
standard properties of Brownian motion without proof.]
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5 Let (Bt)i=0 be a two dimensional Brownian motion. For every a > 0, write
Tor = inf{t > 0 : |B; —a| = r}. For every z € R? and r > 0, we denote by Vg the
uniform measure on {y : |y — z| = r}.

Let a = (—1,0) and 0 < r; < r2 be such that B(a,r1) C B(0,72). The goal of this
question is to show that if By ~ vg,,, then By, ., ~ Vay,i.e. starting the Brownian motion
uniformly from {y : |y| = r2}, the first hitting point of B(a,r;) is uniformly distributed.

(a) Let 0 < r < R. Show that if By ~ v g, then

BTO,’I‘ ~ V07T :

(b) Let R > 2ry, and let z,y be such that |z|] = |y| = R. Let L be the
line passing through the origin perpendicular to the line passing through z and y and
Ty, =inf{t > 0: B, € L}. Show that if A C {z: |z — a|] < 71} is a Borel set, then

P.(Br,,, €A) —Py(Br,, €A)| <Py(rar <TL).

[Hint: You may wish to couple the Brownian motions starting from x and y as follows: let
¢ be the reflection with respect to the line L. Define B, = ¢(By) for t < T, and B; = By
fort > Ty ]

(c) Show that for every € > 0, there exists R > 0 sufficiently large so that for every
Borel set A C{z: |z —a| < ri},

Py, o (Br,, € A) =Py o (Br,, € A) | <e.

(d) Conclude that if By ~ vor,, then By, ~ Vo,

[Throughout this question you may use results from the course provided they are
stated clearly.]

(a) State the martingale convergence theorem for a uniformly integrable martingale.

(b) Let X be a discrete time uniformly integrable martingale. Let S < T be stopping
times. Show that
E[X7] = E[Xg].

(c) Let X be a discrete time martingale with values in Z. Suppose that Xo =x > 0
and for every n, we have | X, 11— X,| < 1land P(| X, 41 — Xp| =1 0(Xo,..., Xp)) = 1/2.
For every a € 7Z, set
T, =inf{n > 0: X,, = a}.

For every y > x, show that
x
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