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(a) When does a strongly convex cone σ ⊂ NR define a smooth toric variety Uσ? State,
without proof, necessary and sufficient conditions on σ.

(b) State the Orbit-Cone correspondence theorem.

(c) Let XΣ be the toric variety associated to a fan Σ with |Σ| ⊂ NR. Let

Xsing
Σ = {x ∈ XΣ|x is a singular (closed) point.}

Prove that Xsing
Σ is a union of orbits of TN , using the parts above or otherwise. You

may use any of the results from lectures without proof.

(d) Let σ = Cone(3e1 − 2e2, e2) ⊂ R2, and let N = Z2 be the standard lattice in R2 with
generators e1, e2. Let M be the dual lattice on N with dual generators e∗1, e

∗
2.

(i) Find the coordinate ring of Uσ as a subring of C[x±1, y±1], where x = χe∗1 ,
y = χe∗2 .

(ii) Show that Uσ is a singular toric variety and find a fan Σ which induces a toric
resolution of singularities

p : XΣ → Uσ.

(iii) Let τ1 = Cone(3e1 − 2e2) and τ2 = Cone(e2). For i = 1, 2 let Di be the Weil
divisor on Uσ corresponding to the orbit-closure V (τi). Compute the class group
Cl(Uσ) in terms of generators and relations.
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(a) Let NR = R2 with standard basis e1, e2. Let Σ be the fan with support in NR with
rays u0 = Cone(e1 + e2), u1 = Cone(e1), u2 = Cone(e2) and u3 = Cone(−e1) and
2-dimensional cones Cone(u0, u1), Cone(u0, u2), Cone(u2, u3).

(i) Show that XΣ is the blowup of P1 × C at a torus-fixed point.

(ii) Let N be the lattice in NR with Z-basis e1, e2. Let N ′ be a rank 1 lattice
generated by e′. Show that the lattice morphism ϕ : N → N ′ given by ϕ(e1) = 0,
ϕ(e2) = e′ induces a toric morphism

f : XΣ → C.

(iii) Show that f−1(0), i.e. the fiber at 0 ∈ C, consists of two copies of P1 meeting at
one point.

(iv) Identify the toric variety XΣ0 := XΣ \ f−1(0). That is, find its fan Σ0 in NR and
identify it with a known variety.

(v) Compute the fibers f−1(x) for all closed points x ∈ C.

(b) Let σ = Cone(e1, e2, e3) ⊂ NR = R3, where e1, e2, e3 are the standard generators of
N = Z3. Let N ′

R
∼= R2 with basis f1, f2 be the support of the complete fan Σ with

rays f1, f2, −(f1 + f2).

(i) Sketch the fans and identify the varieties Uσ and XΣ.

(ii) Let N = Z3 and N ′ = Z2 be the standard lattices in the vector spaces NR and
N ′

R respectively. Consider the lattice morphism φ̂ : N → N ′ defined by

φ̂ =

(
1 0 −1
0 1 −1

)
.

Show that φ̂ is not a morphism of fans from σ to Σ. Find the rational map
f : Uσ 99K XΣ defined by φ̂. What is the indeterminacy locus of f?

(iii) Give a refinement Σ̃ of the cone σ which resolves the indeterminacy locus of
f . That is, show that for your choice of Σ̃ the lattice morphism φ̂ induces a
morphism of fans from Σ̃ to Σ. Identify the toric variety X

Σ̃
and the induced

toric morphism g : X
Σ̃
→ XΣ.
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